Primitive-Equation-Based Low-Order Models with Seasonal Cycle. Part II: Application to Complexity and Nonlinearity of Large-Scale Atmosphere Dynamics

Ulrich Achatz Leibniz-Institut für Atmosphärenphysik an der Universität Rostock, Kuehlungsborn, Germany

Search for other papers by Ulrich Achatz in
Current site
Google Scholar
PubMed
Close
and
J. D. Opsteegh Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by J. D. Opsteegh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A recently developed class of semiempirical low-order models is utilized for the reexamination of several aspects of the complexity and nonlinearity of large-scale dynamics in a GCM. Given their low dimensionality, these models are quite realistic, due to the use of the primitive equations, an efficient EOF basis, and an empirical seasonally dependent linear parameterization of the impact of unresolved scales and not explicitely described processes. Fairly different results are obtained with respect to the dependence of short-term predictability or climate simulations on the number of employed degrees of freedom. Models using 500 degrees of freedom are significantly better in short-term predictions than smaller counterparts. Meaningful predictions of the first 500 EOFs are possible for 4–5 days, while the mean anomaly correlation for the leading 30 EOFs stays above 0.6 for up to 9 days. In a 30-EOF model this is only 6 days. A striking feature is found when it comes to simulations of the monthly mean states and transient fluxes: the 30-EOF model is performing just as well as the 500-EOF model. Since similar behavior is also found in the reproduction of the number and shape of the three significant cluster centroids in the January data of the GCM, one can speculate on a characteristic dimension in the range of a few tens for the large-scale part of the climate attractor. A partial failure diagnosed in the predictability of climate change by our statistical–dynamical models indicates that the employed empirical parameterizations might actually be climate dependent. Understanding their dependence on the large-scale flow could be a prerequisite for applicability to climate change studies. In a further analysis no support is found for the classic hypothesis that the observed cluster centroids, indicating multimodality in the climate statistics, can be interpreted as quasi steady states of the GCM's low-frequency dynamics.

Corresponding author address: Dr. Ulrich Achatz, Institut für Atmosphärenphysik an der Universität Rostock, Schloßstr. 6, 18225, Kuehlungsborn, Germany. Email: achatz@iap-kborn.de

Abstract

A recently developed class of semiempirical low-order models is utilized for the reexamination of several aspects of the complexity and nonlinearity of large-scale dynamics in a GCM. Given their low dimensionality, these models are quite realistic, due to the use of the primitive equations, an efficient EOF basis, and an empirical seasonally dependent linear parameterization of the impact of unresolved scales and not explicitely described processes. Fairly different results are obtained with respect to the dependence of short-term predictability or climate simulations on the number of employed degrees of freedom. Models using 500 degrees of freedom are significantly better in short-term predictions than smaller counterparts. Meaningful predictions of the first 500 EOFs are possible for 4–5 days, while the mean anomaly correlation for the leading 30 EOFs stays above 0.6 for up to 9 days. In a 30-EOF model this is only 6 days. A striking feature is found when it comes to simulations of the monthly mean states and transient fluxes: the 30-EOF model is performing just as well as the 500-EOF model. Since similar behavior is also found in the reproduction of the number and shape of the three significant cluster centroids in the January data of the GCM, one can speculate on a characteristic dimension in the range of a few tens for the large-scale part of the climate attractor. A partial failure diagnosed in the predictability of climate change by our statistical–dynamical models indicates that the employed empirical parameterizations might actually be climate dependent. Understanding their dependence on the large-scale flow could be a prerequisite for applicability to climate change studies. In a further analysis no support is found for the classic hypothesis that the observed cluster centroids, indicating multimodality in the climate statistics, can be interpreted as quasi steady states of the GCM's low-frequency dynamics.

Corresponding author address: Dr. Ulrich Achatz, Institut für Atmosphärenphysik an der Universität Rostock, Schloßstr. 6, 18225, Kuehlungsborn, Germany. Email: achatz@iap-kborn.de

Save
  • Achatz, U., and G. Schmitz, 1997: On the closure problem in the reduction of complex atmospheric models by PIPs and EOFs: A comparison for the case of a two-layer model with zonally symmetric forcing. J. Atmos. Sci., 54 , 24522474.

    • Search Google Scholar
    • Export Citation
  • Achatz, U., and G. Branstator, 1999: A two-layer model with empirical linear corrections and reduced order for studies of internal climate variability. J. Atmos. Sci., 56 , 31403160.

    • Search Google Scholar
    • Export Citation
  • Achatz, U., and J. D. Opsteegh, 2003: Primitive-equation-based low-order models with seasonal cycle. Part I: Model construction. J. Atmos. Sci., 60 , 465477.

    • Search Google Scholar
    • Export Citation
  • Achatz, U., G. Schmitz, and K-M. Greisiger, 1995: Principal interaction patterns in baroclinic wave life cycles. J. Atmos. Sci., 52 , 32013213.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., and S. E. Haupt, 1998: An empirical model of barotropic atmospheric dynamics and its response to tropical forcing. J. Climate, 11 , 26452667.

    • Search Google Scholar
    • Export Citation
  • Charney, J., and J. G. DeVore, 1979: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci., 36 , 12051216.

  • DelSole, T., and A. Y. Hou, 1999: Empirical stochastic models for the dominant climate statistics of a general circulation model. J. Atmos. Sci., 56 , 34363456.

    • Search Google Scholar
    • Export Citation
  • Diday, E., and J. C. Simon, 1976: Clustering analysis. Digital Pattern Recognition. Vol. 10, Communication and Cybernetics, K. S. Fu, Ed., Springer-Verlag,. 4794.

    • Search Google Scholar
    • Export Citation
  • Dole, R. M., 1986: Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Structure. Mon. Wea. Rev., 114 , 178207.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1993: Stochastic dynamics of baroclinic waves. J. Atmos. Sci., 50 , 40444057.

  • Farrell, B. F., and P. J. Ioannou, 1994: A theory for the statistical equilibrium energy spectrum and heat flux produced by transient baroclinic waves. J. Atmos. Sci., 51 , 26852698.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2001: Accurate low-dimensional approximation of the linear dynamics of fluid flow. J. Atmos. Sci., 58 , 27712789.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., C. Ziehmann, and F. Sielmann, 1995: Estimates of spatial degrees of freedom. J. Climate, 8 , 361369.

  • Hannachi, A., 1997: Low-frequency variability in a GCM: Three-dimensional flow regimes and their dynamics. J. Climate, 10 , 13571379.

  • Hansen, A. R., and A. Sutera, 1986: On the probability density distribution of planetary-scale atmospheric wave amplitude. J. Atmos. Sci., 43 , 32503265.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1988: PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns. J. Geophys. Res., 93 , 1101511021.

    • Search Google Scholar
    • Export Citation
  • Honerkamp, J., 1994: Stochastic Dynamical Systems. VCH Publishers, 535 pp.

  • Horel, J. D., 1985: Persistence of the 500 mb height field during Northern Hemisphere winter. Mon. Wea. Rev., 113 , 20302042.

  • Itoh, H., and M. Kimoto, 1999: Weather regimes, low-frequency oscillations, and principal patterns of variability: A perspective of extratropical low-frequency variability. J. Atmos. Sci., 56 , 26842705.

    • Search Google Scholar
    • Export Citation
  • Kwasniok, F., 1996: The reduction of complex dynamical systems using principal interaction patterns. Physica D, 92 , 2860.

  • Kwasniok, F., 1997: Optimal Galerkin approximations of partial differential equations using principal interaction patterns. Phys. Rev. E, 55 , 53655375.

    • Search Google Scholar
    • Export Citation
  • Legras, B., and M. Ghil, 1985: Persistent anomalies, blocking and variations in atmospheric predictability. J. Atmos. Sci., 42 , 433471.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111 , 4659.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci., 26 , 636646.

  • Michelangeli, P-A., R. Vautard, and B. Legras, 1995: Weather regimes: Recurrence and quasi stationarity. J. Atmos. Sci., 52 , 12371256.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and M. Ghil, 1988: Cluster analysis of multiple planetary flow regimes. J. Geophys. Res., 93 , 1092710952.

  • Moise, I., and R. Temam, 2000: Renormalization group method: Application to Navier–Stokes equation. Discrete Contin. Dyn. Syst., 6 , 191210.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., S. Sutera, and N. Tronci, 1988: The EOFs of the geopotential eddies at 500 mb in winter and their probability density distributions. J. Atmos. Sci., 45 , 30633080.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., S. Tibaldi, and T. N. Palmer, 1990: Regimes in the wintertime circulation over northern extratropics. I: Observational evidence. Quart. J. Roy. Meteor. Soc., 116 , 3167.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosova, 1994: A balance condition for stochastic numerical models with application to the El Niño–Southern Oscillation. J. Climate, 7 , 13521372.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8 , 19992024.

  • Toth, Z., 1995: Degrees of freedom in Northern Hemisphere circulation data. Tellus, 47A , 457472.

  • Van den Dool, H. M., and R. M. Chervin, 1986: A comparison of month-to-month persistence of anomalies in a general circulation model and in the earth's atmosphere. J. Atmos. Sci., 43 , 14541466.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., and B. Legras, 1988: On the source of midlatitude low-frequency variability. Part II: Nonlinear equilibration of weather regimes. J. Atmos. Sci., 45 , 28452867.

    • Search Google Scholar
    • Export Citation
  • Voss, R., R. Saussen, and U. Cubasch, 1998: Periodically synchronously coupled integrations with the atmosphere–ocean general circulation model ECHAM3/LSG. Climate Dyn., 14 , 249266.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and S. S. Shen, 1999: Estimation of spatial degrees of freedom of a climate field. J. Climate, 12 , 12801291.

  • Whitaker, J. S., and P. D. Sardeshmukh, 1998: A linear theory of extratropical synoptic eddy statistics. J. Atmos. Sci., 55 , 237258.

  • Zhang, Y., and I. M. Held, 1999: A linear stochastic model of a GCM's midlatitude storm tracks. J. Atmos. Sci., 56 , 34163435.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 216 41 2
PDF Downloads 49 22 1