• Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12 , 410414.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., 1999: Aircraft observations of ice crystal evolution in an altostratus cloud. J. Atmos. Sci., 56 , 19251941.

  • Field, P. R., 2000: Bimodal ice spectra in frontal clouds. Quart. J. Roy. Meteor. Soc., 126 , 379392.

  • Gordon, G. L., and J. D. Marwitz, 1986: Hydrometeor evolution in rainbands over the California valley. J. Atmos. Sci., 43 , 10871100.

  • Gunn, K. L. S., and J. S. Marshall, 1958: The distribution with size of aggregate snowflakes. J. Meteor., 15 , 452461.

  • Harimayo, T., and Y. Kawasota, 2001: Snowflake formation and its regional characteristics. J. Fac. Sci. Hokkaido Univ. Ser. 7, 11 , 793809.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. M. Miloshevich, 2003: Parameterization for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. Stith, J. E. Dye, W. Hall, and A. Grainger, 2002a: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59 , 34573491.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, S. Lewis, J. Iaquinta, M. Kajikawa, C. Twohy, and M. R. Poellot, 2002b: A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59 , 329.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., J. D. Locatelli, and P. V. Hobbs, 1976: Dynamics and cloud microphysics of the rainbands in an occluded frontal system. J. Atmos. Sci., 33 , 19211936.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., and A. B. Kostinski, 2001: Reconsideration of the physical and empirical origins of ZR relations in radar meteorology. Quart. J. Roy. Meteor. Soc., 127 , 517538.

    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., 1989: Observations of the falling motion of early snowflakes. Part II: On the variation of falling velocity. J. Meteor. Soc. Japan, 67 , 731738.

    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., and A. J. Heymsfield, 1989: Aggregation of ice crystals in cirrus. J. Atmos. Sci., 46 , 31083121.

  • Leighton, H. G., 1980: A comparison of a numerical model and an approximate analytical model of the growth of snowflakes. J. Atmos. Sci., 37 , 14091411.

    • Search Google Scholar
    • Export Citation
  • Lin, M. Y., H. M. Lindsay, D. A. Weitz, R. C. Ball, R. Klein, and P. Meakin, 1990: Universal reaction-limited colloid aggregation. Phys. Rev. A, 41 , 20052020.

    • Search Google Scholar
    • Export Citation
  • Lo, K. K., and R. E. Passarelli Jr., 1982: Growth of snow in winter storms: An airborne observational study. J. Atmos. Sci., 39 , 697706.

    • Search Google Scholar
    • Export Citation
  • Meakin, P., 1992: Aggregation kinetics. Phys. Scr., 46 , 295331.

  • Mitchell, D. L., 1988: Evolution of snow-size spectra in cyclonic storms. Part I: Snow growth by vapor deposition and aggregation. J. Atmos. Sci., 45 , 34313451.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1991: Evolution of snow-size spectra in cyclonic storms. Part II: Deviations from the exponential form. J. Atmos. Sci., 48 , 18851899.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53 , 17101723.

    • Search Google Scholar
    • Export Citation
  • Ohtake, T., 1970: Factors affecting the size distribution of raindrops and snowflakes. J. Atmos. Sci., 27 , 804813.

  • Sekhon, R. S., and R. C. Srivastava, 1970: Snow size spectra and radar reflectivity. J. Atmos. Sci., 27 , 299307.

  • Warren, P. B., and R. C. Ball, 1989: Anisotropy and the approach to scaling in monodisperse reaction-limited cluster–cluster aggregation. J. Phys., 22A , 14051413.

    • Search Google Scholar
    • Export Citation
  • Witten, T. A., and M. E. Cates, 1986: Tenuous structures from disorderly growth processes. Science, 232 , 16071612.

  • Wolde, M., and G. Vali, 2002: Cloud structure and crystal growth in nimbostratus. Atmos. Res., 61 , 4974.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 482 171 11
PDF Downloads 302 127 13

Aggregation and Scaling of Ice Crystal Size Distributions

Paul R. FieldMet Office, Farnborough, Hampshire, United Kingdom

Search for other papers by Paul R. Field in
Current site
Google Scholar
PubMed
Close
and
Andrew J. HeymsfieldNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew J. Heymsfield in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ice particle size distributions (PSDs) can be scaled onto a single exponential distribution for a wide range of observed conditions as demonstrated using data from Atmospheric Research Measurement (ARM) cirrus uncinus, Tropical Rainfall Measurement Mission (TRMM) tropical anvils, and First International Satellite Cloud Climatalogy Project (ISCCP) Regional Experiment (FIRE1) midlatitude cirrus field programs. The successful scaling of the PSDs is the result of the dominance of the aggregation process. The PSD is found to be a function of mean particle size and precipitation rate only. A correlation between precipitation rate and particle mass and fall speed relations is demonstrated and made use of in a semiempirical model of ice cloud that predicts the evolution of PSDs.

Corresponding author address: Paul R. Field, Met Office, Y46 Bldg., Cody Technology Park, Ively Rd., Farnborough, Hampshire GU14 0LX, United Kingdom. Email: paul.field@metoffice.com

Abstract

Ice particle size distributions (PSDs) can be scaled onto a single exponential distribution for a wide range of observed conditions as demonstrated using data from Atmospheric Research Measurement (ARM) cirrus uncinus, Tropical Rainfall Measurement Mission (TRMM) tropical anvils, and First International Satellite Cloud Climatalogy Project (ISCCP) Regional Experiment (FIRE1) midlatitude cirrus field programs. The successful scaling of the PSDs is the result of the dominance of the aggregation process. The PSD is found to be a function of mean particle size and precipitation rate only. A correlation between precipitation rate and particle mass and fall speed relations is demonstrated and made use of in a semiempirical model of ice cloud that predicts the evolution of PSDs.

Corresponding author address: Paul R. Field, Met Office, Y46 Bldg., Cody Technology Park, Ively Rd., Farnborough, Hampshire GU14 0LX, United Kingdom. Email: paul.field@metoffice.com

Save