• Baker, R. D., G. Schubert, and P. W. Jones, 2000: Convectively generated internal gravity waves in the lower atmosphere of Venus. Part II: Mean wind shear and wave–mean flow interaction. J. Atmos. Sci., 57 , 200215.

    • Search Google Scholar
    • Export Citation
  • Belton, M. J. S., and Coauthors. 1991: Images from Galileo of the Venus cloud deck. Science, 253 , 15311536.

  • Bullock, M. A., and D. H. Grinspoon, 2001: The recent evolution of climate on Venus. Icarus, 150 , 1937.

  • Counselman III, C. C., S. A. Gourevitch, R. W. King, G. B. Loriot, and E. S. Ginsberg, 1980: Zonal and meridional circulation of the lower atmosphere of Venus determined by radio interferometry. J. Geophys. Res., 85 , 80268030.

    • Search Google Scholar
    • Export Citation
  • Covey, C., and G. Schubert, 1981: 4-day waves in the Venus atmosphere. Icarus, 47 , 130138.

  • Covey, C., and G. Schubert, 1982: Planetary-scale waves in the Venus atmosphere. J. Atmos. Sci., 39 , 23972413.

  • Del Genio, A. D., and W. B. Rossow, 1990: Planetary-scale wave and the cyclic nature of cloud top dynamics on Venus. J. Atmos. Sci., 47 , 293318.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and W. Zhou, 1996: Simulations of superrotation on slowly rotating planets: Sensitivity to rotation and initial condition. Icarus, 120 , 332343.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., W. Zhou, and T. P. Eichler, 1993: Equatorial superrotation in a slowly rotating GCM: Implications for Titan and Venus. Icarus, 101 , 117.

    • Search Google Scholar
    • Export Citation
  • Fels, S. B., and R. S. Lindzen, 1974: The interaction of thermally excited gravity waves with mean flows. Geophys. Fluid Dyn., 6 , 149191.

    • Search Google Scholar
    • Export Citation
  • Gierasch, P. J., 1975: Meridional circulation and the maintenance of the Venus atmospheric rotation. J. Atmos. Sci., 32 , 10381044.

  • Hide, R., 1969: Dynamics of the atmospheres of the major planets with an appendix on the viscous boundary layer at the rigid bounding surface of an electrically-conducting rotating fluid in the presence of a magnetic field. J. Atmos. Sci., 26 , 841853.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and B. F. Farrell, 1987: Superrotation induced by critical-level absorption of gravity waves on Venus: An assessment. J. Atmos. Sci., 44 , 10491061.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., O. Talagrand, R. Sadourny, R. Courtin, D. Gautier, and C. P. McKay, 1995: Numerical simulation of the general circulation of the atmosphere of Titan. Icarus, 117 , 358374.

    • Search Google Scholar
    • Export Citation
  • Iga, S., and Y. Matsuda, 1999: A mechanism of the super-rotation in the Venus atmosphere: Meridional circulation and barotropic instability. Theor. Appl. Mech., Proc. Japan Nat. Congr. Theor. Appl. Mech., 48 , 379383.

    • Search Google Scholar
    • Export Citation
  • Imamura, T., 1997: Momentum balance of the Venusian midlatitude mesosphere. J. Geophys. Res., 102 , 66156620.

  • Koschmieder, E. L., and E. R. Lewis, 1986: Hadley circulation on a nonuniformly heated rotating plate. J. Atmos. Sci., 43 , 25142526.

  • Leroy, S. S., and A. P. Ingersoll, 1995: Convective generation of gravity waves in Venus's atmosphere: Gravity spectrum and momentum transport. J. Atmos. Sci., 52 , 37173737.

    • Search Google Scholar
    • Export Citation
  • Matsuda, Y., 1980: Dynamics of the four-day circulation in the Venus atmosphere. J. Meteor. Soc. Japan, 58 , 443470.

  • Matsuda, Y., 1982: A further study of dynamics of the four-day circulation in the Venus atmosphere. J. Meteor. Soc. Japan, 60 , 245254.

    • Search Google Scholar
    • Export Citation
  • Matsuda, Y., and T. Matsuno, 1978: Radiative–convective equilibrium of the Venusian atmosphere. J. Meteor. Soc. Japan, 56 , 118.

  • McIntyre, M. E., 1989: On dynamics and transport near the polar mesopause in summer. J. Geophys. Res., 94 , 1461714628.

  • Newman, M., and C. B. Leovy, 1992: Maintenance of strong rotational winds in Venus' middle atmosphere by thermal tides. Science, 257 , 647650.

    • Search Google Scholar
    • Export Citation
  • Newman, M., G. Schubert, A. J. Kliore, and I. R. Patel, 1984: Zonal winds in the middle atmosphere of Venus from Pioneer Venus radio occultation data. J. Atmos. Sci., 41 , 19011913.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., M. Takahashi, T. Nakajima, and A. Sumi, 1995: Development of an atmospheric general circulation model. Climate System Dynamics and Modelling, Vol. I-3, T. Matsuno, Ed., Center for Climate System Research, 1–27.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., 1983: A general circulation model of a Venus-like atmosphere. J. Atmos. Sci., 40 , 273302.

  • Rossow, W. B., and G. P. Williams, 1979: Large-scale motion in the Venus stratosphere. J. Atmos. Sci., 36 , 377389.

  • Rossow, W. B., S. B. Fels, and P. H. Stone, 1980: Comments on “A three-dimensional model of dynamical processes in the Venus atmosphere.”. J. Atmos. Sci., 37 , 250252.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., A. D. Del Genio, and T. Eichler, 1990: Cloud-tracked winds from Pioneer Venus OCPP images. J. Atmos. Sci., 47 , 20532084.

    • Search Google Scholar
    • Export Citation
  • Schubert, G., and J. A. Whitehead, 1969: Moving flame experiment with liquid mercury: Possible implications for the Venus atmosphere. Science, 163 , 7172.

    • Search Google Scholar
    • Export Citation
  • Schubert, G., and Coauthors. 1980: Structure and circulation of the Venus atmosphere. J. Geophys. Res., 85 , 80078025.

  • Seiff, A., D. B. Kirk, R. E. Young, R. C. Blanchard, J. T. Findlay, G. M. Kelly, and S. C. Sommer, 1980: Measurements of thermal structure and thermal contrasts in the atmosphere of Venus and related dynamical observations: Results from the four Pioneer Venus probes. J. Geophys. Res., 85 , 79037933.

    • Search Google Scholar
    • Export Citation
  • Smith, M. D., and J. Gierasch, 1996: Global-scale winds at the Venus cloud-top inferred from cloud streak orientations. Icarus, 123 , 313323.

    • Search Google Scholar
    • Export Citation
  • Smith, M. D., J. Gierasch, and P. J. Schinder, 1992: A global traveling wave on Venus. Science, 256 , 652655.

  • Smith, M. D., J. Gierasch, and P. J. Schinder, 1993: Global-scale waves in the Venus atmosphere. J. Atmos. Sci., 50 , 40804096.

  • Thompson, R., 1970: Venus's general circulation is a merry-go-round. J. Atmos. Sci., 27 , 11071116.

  • Tomasko, M. G., L. R. Doose, and P. H. Smith, 1985: The absorption of solar energy and the heating rate in the atmosphere of Venus. Adv. Space Res., 5 , 7179.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, M., 2001: Blocky markings and planetary-scale waves in the equatorial cloud layer of Venus. J. Atmos. Sci., 58 , 365375.

  • Yamamoto, M., and H. Tanaka, 1997: Formation and maintenance of the 4-day circulation in the Venus middle atmosphere. J. Atmos. Sci., 54 , 14721489.

    • Search Google Scholar
    • Export Citation
  • Young, R. E., and J. B. Pollack, 1977: A three-dimensional model of dynamical processes in the Venus atmosphere. J. Atmos. Sci., 34 , 13151351.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 425 155 10
PDF Downloads 182 75 6

The Fully Developed Superrotation Simulated by a General Circulation Model of a Venus-like Atmosphere

Masaru YamamotoFaculty of Education, Wakayama University, Wakayama, Japan

Search for other papers by Masaru Yamamoto in
Current site
Google Scholar
PubMed
Close
and
Masaaki TakahashiCenter for Climate System Research, University of Tokyo, Tokyo, Japan

Search for other papers by Masaaki Takahashi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Formation and maintenance of the fully developed superrotation in the Venus atmosphere are investigated by using a Center for Climate System Research/National Institute for Environmental Study (CCSR/NIES) Venus-like atmospheric general circulation model. Under the condition that zonally uniform solar heating is used, the meridional circulation is dominated by a single cell in a whole atmosphere, and the superrotation with velocities faster than 100 m s–1 is formed near 60-km altitude. The meridional circulation effectively pumps up angular momentum from the lower to the middle atmosphere. Then the angular momentum is transported by poleward flows of the meridional circulation, and a part of the transported momentum is returned back to the low-latitudinal regions by waves. As a result, the simulated superrotation is formed by the Gierasch mechanism. Equatorward angular momentum flux required in the Gierasch mechanism is caused by not only barotropic waves but also various waves. Rossby, mixed Rossby–gravity, and gravity waves transport the angular momentum equatorward. Although vertically propagating gravity waves decelerate the superrotation above 70 km, the fully developed superrotation can be maintained in the cloud layer (45–70 km).

Corresponding author address: M. Yamamoto, Faculty of Education, Wakayama University, 930 Sakaedani, Wakayama 640-8510 Japan. Email: yamakatu@center.wakayama-u.ac.jp

Abstract

Formation and maintenance of the fully developed superrotation in the Venus atmosphere are investigated by using a Center for Climate System Research/National Institute for Environmental Study (CCSR/NIES) Venus-like atmospheric general circulation model. Under the condition that zonally uniform solar heating is used, the meridional circulation is dominated by a single cell in a whole atmosphere, and the superrotation with velocities faster than 100 m s–1 is formed near 60-km altitude. The meridional circulation effectively pumps up angular momentum from the lower to the middle atmosphere. Then the angular momentum is transported by poleward flows of the meridional circulation, and a part of the transported momentum is returned back to the low-latitudinal regions by waves. As a result, the simulated superrotation is formed by the Gierasch mechanism. Equatorward angular momentum flux required in the Gierasch mechanism is caused by not only barotropic waves but also various waves. Rossby, mixed Rossby–gravity, and gravity waves transport the angular momentum equatorward. Although vertically propagating gravity waves decelerate the superrotation above 70 km, the fully developed superrotation can be maintained in the cloud layer (45–70 km).

Corresponding author address: M. Yamamoto, Faculty of Education, Wakayama University, 930 Sakaedani, Wakayama 640-8510 Japan. Email: yamakatu@center.wakayama-u.ac.jp

Save