• Baer, F., and J. J. Tribbia, 1976: Spectral fidelity of gappy data. Tellus, 28 , 215227.

  • Biner, S., D. Caya, R. Laprise, and L. Spacek, 2000: Nesting of RCMs by imposing large scales. Research activities in atmospheric and oceanic modelling, WMO Rep. 30, Tech. Doc. 987, 7.3–7.4.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 1994: Mean and transient spectral energy and enstrophy budgets. J. Atmos. Sci., 51 , 17651779.

  • Boer, G. J., and T. G. Shepherd, 1983: Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci., 40 , 164184.

  • Bubnova, R., G. Hello, P. Bénard, and J-F. Geleyn, 1995: Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP system. Mon. Wea. Rev., 123 , 515535.

    • Search Google Scholar
    • Export Citation
  • Chen, Q-S., and Y-H. Kuo, 1992: A harmonic-sine series expansion and its application to partitioning and reconstruction problems in a limited area. Mon. Wea. Rev., 120 , 91112.

    • Search Google Scholar
    • Export Citation
  • Cocke, S., and T. E. LaRow, 2000: Seasonal predictions using a regional spectral model embedded within a coupled ocean–atmosphere model. Mon. Wea. Rev., 128 , 689708.

    • Search Google Scholar
    • Export Citation
  • Davies, H. C., 1976: A lateral boundary formulation for multi-level prediction models. Quart. J. Roy. Meteor. Soc., 102 , 405418.

  • Denis, B., J. Côté, and R. Laprise, 2002: Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using discrete cosine transforms (DFT). Mon. Wea. Rev., 130 , 18121829.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1985: Spectra computed from a limited area grid. Mon. Wea. Rev., 113 , 15541562.

  • Giorgi, F., and L. Mearns, 1999: Regional climate modeling revisited. J. Geophys. Res., 104 (D6) 63356352.

  • Haugen, J. E., and B. Machenhauer, 1993: A spectral limited-area model formulation with time-dependent boundary conditions applied to the shallow water equations. Mon. Wea. Rev., 121 , 26182630.

    • Search Google Scholar
    • Export Citation
  • Juang, H-M. H., and S-Y. Hong, 2001: Sensitivity of the NCEP regional spectral model to domain size and nesting strategy. Mon. Wea. Rev., 129 , 29042922.

    • Search Google Scholar
    • Export Citation
  • Koshyk, J. N., and G. J. Boer, 1995: Parameterization of dynamical subgrid-scale processes in a spectral GCM. J. Atmos. Sci., 52 , 965976.

    • Search Google Scholar
    • Export Citation
  • Kuo, H-C., and R. T. Williams, 1992: Boundary effects in regional spectral models. Mon. Wea. Rev., 120 , 29862992.

  • Kuo, H-C., and R. T. Williams, 1998: Scale-dependent accuracy in regional spectral models. Mon. Wea. Rev., 126 , 26402647.

  • Lambert, S. J., 1984: A global available potential energy–kinetic energy budget in terms of the two-dimensional wavenumber for the FGGE year. Atmos.–Ocean, 22 , 265282.

    • Search Google Scholar
    • Export Citation
  • Laval, K., R. Sadourny, and Y. Serafini, 1981: Land surface processes in a simplified general circulation model. Geophys. Astrophys. Fluid Dyn., 17 , 129150.

    • Search Google Scholar
    • Export Citation
  • Machenhauer, B., 1979: The spectral method. Numerical Methods Used in Atmospheric Models, A. Kasahara, Ed., GARP Publ. Series 17, Vol. 2, WMO and ICSU, 121–275.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and the ocean circulation. Part 1: The atmospheric circulation and the hydrology of the earth's surface. Mon. Wea. Rev., 97 , 739774.

    • Search Google Scholar
    • Export Citation
  • McGregor, J. L., 1997: Regional climate modelling. Meteor. Atmos. Phys., 63 , 105117.

  • Merilees, P. E., 1968: The equations of motion in spectral form. J. Atmos. Sci., 25 , 736743.

  • Robert, A., 1966: The integration of a low order spectral form of the primitive meteorological equations. J. Meteor. Soc. Japan, 44 , 237245.

    • Search Google Scholar
    • Export Citation
  • Segami, A., K. Kurihara, H. Nakamura, M. Ueno, I. Takano, and Y. Tatsumi, 1989: Operational mesoscale weather prediction with Japan spectral model. J. Meteor. Soc. Japan, 67 , 907923.

    • Search Google Scholar
    • Export Citation
  • Silberman, I., 1954: Planetary waves in the atmosphere. J. Meteor., 11 , 2734.

  • Tatsumi, Y., 1986: A spectral limited-area model with time dependent lateral boundary conditions and its application to a multi-level primitive equation model. J. Meteor. Soc. Japan, 64 , 637663.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128 , 36643673.

    • Search Google Scholar
    • Export Citation
  • Waldron, K. M., J. Peagle, and J. D. Horel, 1996: Sensitivity of a spectrally and nudged LAM to outer model options. Mon. Wea. Rev., 124 , 529547.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., R. A. Peterson, and R. E. Treadon, 1997: A tutorial on lateral conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78 , 25992617.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., and R. Laprise, 2000: Numerical approximations for global atmospheric GCMs. Numerical Modeling of the Global Atmosphere in the Climate System: Proceedings of the NATO Advanced Study Institute, May 25–June 5 1998, P. Mote and A. O'Neill, Eds., Kluwer Academic, 127–219.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 150 35 2
PDF Downloads 25 10 1

Resolved Scales and Nonlinear Interactions in Limited-Area Models

View More View Less
  • 1 Canadian Regional Climate Modelling Group, Département des Sciences de la Terre et de l'Atmosphère, Université du Québec à Montréal, Montreal, Quebec, Canada
Restricted access

Abstract

A procedure for identifying the resolved scales in nested limited-area models (LAMs) and for computing the nonlinear interactions between these scales is sketched in this paper. The spectral perspective is adopted and implemented semiempirically by analogy with global and r-periodic sectorial models. The analysis indicates that resolved scales are limited in LAMs and sectorial models compared to global models of similar resolution, and that nonlinear interactions may be treated less accurately in LAMs than in global models. A further result of the analysis is the evidence of the paramount importance of nesting, which acts as a type of closure scheme required by LAMs due to their limited computational domain. The assignment of lateral boundary values (LBVs) is responsible for making LAMs nonperiodic; these LBVs include scales exceeding the size of the LAM's domain and several other shorter scales that are nonperiodic on the limited computational domain.

Corresponding author address: Dr. René Laprise, Dept. of Earth and Atmospheric Sciences, U.Q.A.M., 201 Avenue Président-Kennedy, Office PK-6528, Case Postale 8888, Succ. Centre-Ville, Montreal, QC H3C 3P8, Canada. Email: laprise.rene@uqam.ca

Abstract

A procedure for identifying the resolved scales in nested limited-area models (LAMs) and for computing the nonlinear interactions between these scales is sketched in this paper. The spectral perspective is adopted and implemented semiempirically by analogy with global and r-periodic sectorial models. The analysis indicates that resolved scales are limited in LAMs and sectorial models compared to global models of similar resolution, and that nonlinear interactions may be treated less accurately in LAMs than in global models. A further result of the analysis is the evidence of the paramount importance of nesting, which acts as a type of closure scheme required by LAMs due to their limited computational domain. The assignment of lateral boundary values (LBVs) is responsible for making LAMs nonperiodic; these LBVs include scales exceeding the size of the LAM's domain and several other shorter scales that are nonperiodic on the limited computational domain.

Corresponding author address: Dr. René Laprise, Dept. of Earth and Atmospheric Sciences, U.Q.A.M., 201 Avenue Président-Kennedy, Office PK-6528, Case Postale 8888, Succ. Centre-Ville, Montreal, QC H3C 3P8, Canada. Email: laprise.rene@uqam.ca

Save