• Buriez, J. C., , and Y. Fouquart, 1980: Generalization of the Curtis–Godson approximation to inhomogeneous scattering atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 24 , 407419.

    • Search Google Scholar
    • Export Citation
  • Dubuisson, P., , J. C. Buriez, , and Y. Fouquart, 1996: High spectral resolution solar radiative transfer in absorbing and scattering media: Application to the satellite simulations. J. Quant. Spectrosc. Radiat. Transfer, 55 , 103126.

    • Search Google Scholar
    • Export Citation
  • Elterman, L., 1968: UV, visible and IR attenuation for altitudes to 50 km. Environ. Res. Paper, AFCRL NTIS-AD 671933, Air Force Cambridge Research Laboratories, 58 pp.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49 , 21392156.

    • Search Google Scholar
    • Export Citation
  • Goody, R., , R. West, , L. Chen, , and D. Crisp, 1989: The correlated-k method for radiation calculations in nonhomogeneous atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 42 , 539550.

    • Search Google Scholar
    • Export Citation
  • Humlicek, J., 1982: Optimized computation of the Voigt and complex probability functions. J. Quant. Spectrosc. Radiat. Transfer, 27 , 437434.

    • Search Google Scholar
    • Export Citation
  • Lacis, A., , and V. Oinas, 1991: A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res., 96 , 90279063.

    • Search Google Scholar
    • Export Citation
  • Lyapustin, A., 2002: Radiative transfer code SHARM-3D for radiance simulations over a non-Lambertian nonhomogeneous surface: Intercomparison study. Appl. Optics, 41 , 56075615.

    • Search Google Scholar
    • Export Citation
  • Lyapustin, A., , and T. Z. Muldashev, 1999: Method of spherical harmonics in the radiative transfer problem with non-Lambertian surface. J. Quant. Spectrosc. Radiat. Transfer, 61 , 545555.

    • Search Google Scholar
    • Export Citation
  • McClathey, R. A., , R. W. Fenn, , J. E. A. Selby, , F. E. Volz, , and J. S. Garing, 1972: Optical properties of the atmosphere. Tech. Rep. AFCRL-72.0497, Air Force Cambridge Research Laboratories, 68 pp.

    • Search Google Scholar
    • Export Citation
  • Meadows, V. S., , and D. Crisp, 1996: Ground-based near-infrared observations of the Venus nightside: The thermal structure and water abundance near the surface. J. Geophys. Res., 101 , 45954622.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., , and M. Tanaka, 1988: Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Transfer, 40 , 5169.

    • Search Google Scholar
    • Export Citation
  • Partain, P. T., , A. K. Heidinger, , and G. L. Stephens, 2000: High spectral resolution radiative transfer: Application of the equivalence theorem. J. Geophys. Res., 105 , 21632177.

    • Search Google Scholar
    • Export Citation
  • Pfeilsticker, K., , F. Erle, , O. Funk, , H. Veitel, , and U. Platt, 1998: First geometrical pathlength probability density function derivation of the skylight from spectroscopically highly resolving oxygen A-band observations. 1. Measurement technique, atmospheric observations and model calculations. J. Geophys. Res., 103 , 1148311504.

    • Search Google Scholar
    • Export Citation
  • Rothman, L. S., and and Coauthors, 1998: The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition. J. Quant. Spectrosc. Radiat. Transfer, 60 , 665710.

    • Search Google Scholar
    • Export Citation
  • Stam, D. M., , J. F. de Haan, , J. W. Hovenier, , and P. Stammes, 2000: A fast method for simulating observations of polarized light emerging from the atmosphere applied to the oxygen-A band. J. Quant. Spectrosc. Radiat. Transfer, 64 , 131149.

    • Search Google Scholar
    • Export Citation
  • West, R., , D. Crisp, , and L. Chen, 1990: Mapping transformations for broadband atmospheric radiation calculations. J. Quant. Spectrosc. Radiat. Transfer, 43 , 191199.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 112 112 19
PDF Downloads 16 16 3

Interpolation and Profile Correction (IPC) Method for Shortwave Radiative Transfer in Spectral Intervals of Gaseous Absorption

View More View Less
  • 1 University of Maryland, Baltimore County, Baltimore, and NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The new interpolation and profile correction (IPC) method for radiance/flux calculations in gaseous absorption bands is presented. The IPC method is designed to allow an arbitrary spectral resolution including monochromatic mode. It features a high computational efficiency typical of the correlated-k method, and an accuracy comparable to that of the line-by-line codes. The IPC method may be considered as a variant of the spectral mapping techniques powerfully enhanced by a straightforward correction of the solution for single and multiple scattering.

Corresponding author address: Dr. Alexei I. Lyapustin, NASA Goddard Space Flight Center, Mail Code 920, Greenbelt, MD 20771. Email: alyapust@pop900.gsfc.nasa.gov

Abstract

The new interpolation and profile correction (IPC) method for radiance/flux calculations in gaseous absorption bands is presented. The IPC method is designed to allow an arbitrary spectral resolution including monochromatic mode. It features a high computational efficiency typical of the correlated-k method, and an accuracy comparable to that of the line-by-line codes. The IPC method may be considered as a variant of the spectral mapping techniques powerfully enhanced by a straightforward correction of the solution for single and multiple scattering.

Corresponding author address: Dr. Alexei I. Lyapustin, NASA Goddard Space Flight Center, Mail Code 920, Greenbelt, MD 20771. Email: alyapust@pop900.gsfc.nasa.gov

Save