• Ackerman, B., 1958: Turbulence around tropical cumuli. J. Meteor., 15 , 6974.

  • Arking, A., 1999: The influence of clouds and water vapor on atmospheric absorption. Geophys. Res. Lett., 26 , 27292732.

  • Austin, G. R., R. M. Rauber, H. T. Ochs III, and L. J. Miller, 1996: Trade-wind clouds and Hawaiian rainbands. Mon. Wea. Rev., 124 , 21262151.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46 , 740759.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., and V. N. Kapustin, 2002: A Pacific aerosol survey. Part I: A decade of data on particle production, transport, evolution, and mixing in the troposphere. J. Atmos. Sci., 59 , 363382.

    • Search Google Scholar
    • Export Citation
  • Collins, D. R., R. C. Flagan, and J. H. Seinfeld, 2002: Improved inversion of scanning DMA data. Aerosol. Sci. Technol., 36 , 19.

  • Conant, W. C., A. M. Vogelmann, and V. Ramanathan, 1998: The unexplained solar absorption and atmospheric H2O: A direct test using clear-sky data. Tellus, 50 , 525533.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., 1993: Two-dimensional radiative transfer in cloudy atmospheres: The spherical harmonic spatial grid method. J. Atmos. Sci., 50 , 31113124.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., 1998: The spherical harmonic discrete ordinate method for three-dimensional atmospheric radiative transfer. J. Atmos. Sci., 55 , 429446.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49 , 21392156.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and L. F. Radke, 1992: Reply. J. Atmos. Sci., 49 , 15161517.

  • Hoppel, W. A., G. M. Frick, and J. W. Fitzgerald, 1996: Deducing droplet concentration and supersaturation in marine boundary layer clouds from surface aerosol measurements. J. Geophys. Res., 101 , 2655326565.

    • Search Google Scholar
    • Export Citation
  • Jenkins, F., and H. White, 1957: Fundamentals of Optics. McGraw Hill, 637 pp.

  • Jiang, H., and W. R. Cotton, 2000: Large eddy simulation of shallow cumulus convection during BOMEX: Sensitivity to microphysics and radiation. J. Atmos. Sci., 57 , 582594.

    • Search Google Scholar
    • Export Citation
  • Kaufman, V., and B. Edlen, 1974: Reference wavelengths from atomic spectra in the range 15 Å to 25000 Å. J. Phys. Chem. Ref. Data, 3 , 825896.

    • Search Google Scholar
    • Export Citation
  • Kebabian, P. L., cited 1998: Optical monitor for water vapor concentration. U.S. Patent 5,760,895. [Available online at http://patft.uspto.gov/netahtml/srchnum.htm.].

    • Search Google Scholar
    • Export Citation
  • Kebabian, P. L., T. Berkoff, and A. Freedman, 1998: Water vapour sensing using polarization selection of a Zeeman-split argon discharge lamp emission line. Meas. Sci. Technol., 9 , 17931796.

    • Search Google Scholar
    • Export Citation
  • Kebabian, P. L., C. E. Kolb, and A. Freedman, 2002: Spectroscopic water vapor sensor for rapid response measurements of humidity in the troposphere. J. Geophys. Res., 107 , 4670. doi:10.1029/2001JD002003.

    • Search Google Scholar
    • Export Citation
  • Kerminen, V-M., and A. S. Wexler, 1994: Particle formation due to SO2 oxidation and high relative humidity in the remote marine boundary layer. J. Geophys. Res., 99 , 2560725614.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., B. A. Albrecht, R. Lhermitte, and A. Savtchenko, 2001: Radar observations of updrafts, downdrafts, and turbulence in fair-weather cumuli. J. Atmos. Sci., 58 , 17501766.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and W. A. Cooper, 1990: Performance of some airborne thermometers in clouds. J. Atmos. Oceanic Technol., 7 , 480494.

  • Liu, Y. G., and P. H. Daum, 2000: The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters. J. Aerosol Sci., 31 , 945957.

    • Search Google Scholar
    • Export Citation
  • Lu, M-L., R. A. McClatchey, and J. H. Seinfeld, 2002: Cloud halos: Numerical simulation of dynamical structure and radiative impact. J. Appl. Meteor, 41 , 832848.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1949: Effects of wind shear on some aspects of convection. Trans. Amer. Geophys. Union, 30 , 1925.

  • Marshak, A., A. Davis, W. Wiscombe, W. Ridgway, and R. Cahalan, 1998: Biases in shortwave column absorption in the presence of fractal clouds. J. Climate, 11 , 431446.

    • Search Google Scholar
    • Export Citation
  • McManus, J. B., P. L. Kebabian, and M. Zahniser, 1995: Astigmatic mirror multipass absorption cell for long path length spectroscopy. Appl. Opt., 34 , 33363338.

    • Search Google Scholar
    • Export Citation
  • McNider, R. T., and F. J. Kopp, 1990: Specification of the scale and magnitude of thermals used to initiate convection in cloud models. J. Appl. Meteor., 29 , 99104.

    • Search Google Scholar
    • Export Citation
  • Moore, C., 1971: Atomic energy levels. NBS Circular 467, U.S. Government Printing Office, 309 pp.

  • Murray, F. W., 1971: Humidity augmentation as the initial pulse in a numerical cloud model. Mon. Wea. Rev., 99 , 3748.

  • Perry, K. D., and P. V. Hobbs, 1994: Further evidence for particle nucleation in clear air adjacent to marine cumulus clouds. J. Geophy. Res., 99 , 2280322818.

    • Search Google Scholar
    • Export Citation
  • Perry, K. D., 1996: Influences of isolated cumulus clouds on the humidity of their surroundings. J. Atmos. Sci., 53 , 159174.

  • Pielke, R. A., and Coauthors. 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys., 49 , 6991.

  • Platt, C. M. R., and D. J. Gambling, 1971: Laser radar reflexions and downward infrared flux enhancement near small cumulus. Nature, 232 , 182185.

    • Search Google Scholar
    • Export Citation
  • Radke, L. F., and P. V. Hobbs, 1991: Humidity and particle fields around some small cumulus clouds. J. Atmos. Sci., 48 , 11901193.

  • Raes, F., R. Van Dingenen, E. Vignati, J. Wilson, J. P. Putaud, J. H. Seinfeld, and P. Adams, 2000: Formation and cycling of aerosols in the global troposphere. Atmos. Environ., 34 , 42154240.

    • Search Google Scholar
    • Export Citation
  • Raga, G. B., J. B. Jensen, and M. B. Baker, 1990: Characteristics of cumulus band clouds off the coast of Hawaii. J. Atmos. Sci., 47 , 338355.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and A. M. Blyth, 1986: A stochastic mixing model for nonprecipitating cumulus clouds. J. Atmos. Sci., 43 , 27082718.

  • Raymond, D. J., R. Solomon, and A. M. Blyth, 1991: Mass fluxes in New Mexico mountain thunderstorm from radar and aircraft measurements. Quart. J. Roy. Meteor. Soc., 117 , 587621.

    • Search Google Scholar
    • Export Citation
  • Rothman, L. S., and Coauthors. 1998: The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition. J. Quant. Spectrosc. Radiat. Transfer, 60 , 665710.

    • Search Google Scholar
    • Export Citation
  • Steiner, J. T., 1973: A three-dimensional model of cumulus cloud development. J. Atmos. Sci., 30 , 414435.

  • Stevens, B., and Coauthors. 2001: Simulations of trade wind cumuli under a strong inversion. J. Atmos. Sci., 58 , 18701891.

  • Taylor, G. R., and M. B. Baker, 1991: Entrainment and detrainment in cumulus clouds. J. Atmos. Sci., 48 , 112121.

  • Telford, J. W., and P. B. Wagner, 1980: The dynamical and liquid water structure of the small cumulus as determined from its environment. Pure Appl. Geophys., 118 , 935952.

    • Search Google Scholar
    • Export Citation
  • Vaillancourt, P. A., M. K. Yau, and W. W. Grabowski, 1997: Upshear and downshear evolution of cloud structure and spectral properties. J. Atmos. Sci., 54 , 12031217.

    • Search Google Scholar
    • Export Citation
  • Vogelmann, A. M., V. Ramanathan, W. C. Conant, and W. E. Hunter, 1998: Observational constraints on non-Lorentzian continuum effects in the near-infrared solar spectrum using ARM ARESE data. J. Quant. Spectrosc. Radiat. Transfer, 60 , 231246.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38 , 2962.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and R. C. Flagan, 1990: Scanning electrical mobility spectrometer. Aerosol. Sci. Technol., 13 , 230240.

  • Warner, J., 1955: The water content of cumuliform cloud. Tellus, 7 , 449457.

  • Warner, J., 1977: Time variation of updraft and water content in small cumulus clouds. J. Atmos. Sci., 34 , 13061312.

  • Weber, R. J., and Coauthors. 2001: Measurements of enhanced H2SO4 and 2–4 nm particles near a frontal cloud during the First Aerosol Characterization Experiment (ACE1). J. Geophy. Res., 106 , 2410724117.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 598 469 78
PDF Downloads 57 35 3

Analysis of Humidity Halos around Trade Wind Cumulus Clouds

View More View Less
  • 1 California Institute of Technology, Pasadena, California
  • | 2 Aerodyne Research, Inc., Billerica, Massachusetts
  • | 3 Naval Postgraduate School, Monterey, California
Restricted access

Abstract

Regions of enhanced humidity in the vicinity of cumulus clouds, so-called cloud halos, reflect features of cloud evolution, exert radiative effects, and may serve as a locus for new particle formation. Reported here are the results of an aircraft sampling campaign carried out near Oahu, Hawaii, from 31 July through 10 August 2001, aimed at characterizing the properties of trade wind cumulus cloud halos. An Aerodyne Research, Inc., fast spectroscopic water vapor sensor, flown for the first time in this campaign, allowed characterization of humidity properties at 10-m spatial resolution. Statistical properties of 60 traverses through cloud halos over the campaign were in general agreement with measurements reported by Perry and Hobbs. One particularly long-lived cloud is analyzed in detail, through both airborne measurement and numerical simulation, to track evolution of the cloud halos over the cloud's lifetime. Results of both observation and the simulation show that cloud halos tend to be broad at lower levels and narrow at upper levels, and broader on the downshear side than on the upshear side, broadening with time particularly in the downshear direction. The high correlation of clear-air turbulence distribution with the halo distribution temporally and spatially suggests that the halo forms, in part, due to turbulent mixing at the cloud boundary. Radiative calculations carried out on the simulated cloud and halo field indicate that the halo radiative effect is largest near cloud top during mature and dissipation stages. The halo-enhanced atmospheric shortwave absorption, averaged over this period, is about 1.3% of total solar absorption in the column.

Current affiliation: Environmental Sciences Department, Brookhaven National Laboratory, Upton, New York

Corresponding author address: Dr. John H. Seinfeld, California Institute of Technology, 210-41, Pasadena, CA 91125. Email: seinfeld@caltech.edu

Abstract

Regions of enhanced humidity in the vicinity of cumulus clouds, so-called cloud halos, reflect features of cloud evolution, exert radiative effects, and may serve as a locus for new particle formation. Reported here are the results of an aircraft sampling campaign carried out near Oahu, Hawaii, from 31 July through 10 August 2001, aimed at characterizing the properties of trade wind cumulus cloud halos. An Aerodyne Research, Inc., fast spectroscopic water vapor sensor, flown for the first time in this campaign, allowed characterization of humidity properties at 10-m spatial resolution. Statistical properties of 60 traverses through cloud halos over the campaign were in general agreement with measurements reported by Perry and Hobbs. One particularly long-lived cloud is analyzed in detail, through both airborne measurement and numerical simulation, to track evolution of the cloud halos over the cloud's lifetime. Results of both observation and the simulation show that cloud halos tend to be broad at lower levels and narrow at upper levels, and broader on the downshear side than on the upshear side, broadening with time particularly in the downshear direction. The high correlation of clear-air turbulence distribution with the halo distribution temporally and spatially suggests that the halo forms, in part, due to turbulent mixing at the cloud boundary. Radiative calculations carried out on the simulated cloud and halo field indicate that the halo radiative effect is largest near cloud top during mature and dissipation stages. The halo-enhanced atmospheric shortwave absorption, averaged over this period, is about 1.3% of total solar absorption in the column.

Current affiliation: Environmental Sciences Department, Brookhaven National Laboratory, Upton, New York

Corresponding author address: Dr. John H. Seinfeld, California Institute of Technology, 210-41, Pasadena, CA 91125. Email: seinfeld@caltech.edu

Save