• Ackerman, S. A., and G. L. Stephens, 1987: The absorption of solar radiation by cloud droplets: An application of anomalous diffraction theory. J. Atmos. Sci., 44 , 15741588.

    • Search Google Scholar
    • Export Citation
  • Ackerman, T. P., N. K. Liou, F. P. J. Valero, and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45 , 16061623.

  • Anderson, J. K., K. Droegemier, and R. B. Wilhelmson, 1985: Simulation of the thunderstorm subcloud environment. Preprints, 14th Conf. on Severe Local Storms, Indianapolis, IN, Amer. Meteor. Soc., 147–150.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and V. R. Lamb, 1981: A potential enstrophy conserving scheme for the shallow water equations. Mon. Wea. Rev., 109 , 1836.

    • Search Google Scholar
    • Export Citation
  • Auer, A. H., and D. Veal, 1970: The dimensions of ice crystals in natural clouds. J. Atmos. Sci., 27 , 919926.

  • Böhm, J. P., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46 , 24192427.

  • Chen, J. P., G. M. McFarquhar, and A. J. Heymsfield, 1997: A modeling and observational study of the detailed microphysical structure of tropical cirrus anvil. J. Geophys. Res., 102 , 66376653.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29 , 91115.

  • Del Genio, A. D., M. S. Yao, W. Kovari, and K. K. W. Lo, 1996: A prognostic cloud water parameterization for global climate models. J. Climate, 9 , 270304.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., M. P. Meyers, and W. R. Cotton, 1994: Numerical model simulations of cirrus clouds including homogeneous and heterogeneous ice nucleation. J. Atmos. Sci., 51 , 7790.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44 , 11801210.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double scheme multiple-phase four-class bulk ice scheme. Part I. Description. J. Atmos. Sci., 51 , 249280.

  • Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU general circulation model. Part I. Model description and simulated microphysical processes. J. Climate, 9 , 489529.

    • Search Google Scholar
    • Export Citation
  • Hall, W. D., and H. R. Pruppacher, 1976: The survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci., 33 , 19952006.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1975: Cirrus uncinus generating cells and the evolution of cirroform clouds. Part III. J. Atmos. Sci., 32 , 799808.

    • Search Google Scholar
    • Export Citation
  • Jayaweera, K. O. L. F., 1971: Calculations of ice crystal growth. J. Atmos. Sci., 28 , 728736.

  • Jensen, E. J., O. B. Toon, D. L. Westphal, S. Kinne, and A. J. Heymsfield, 1994: Microphysical modeling of cirrus. 1. Comparison with 1986 FIRE IFO measurements. J. Geophy. Res., 99 , 1042110442.

    • Search Google Scholar
    • Export Citation
  • Ji, W., and Pao K. Wang, 1999: Ventilation coefficients of falling ice crystals at low-intermediate Reynolds numbers. J. Atmos. Sci., 56 , 829836.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. E., 1997: An examination of the microphysical and dynamical processes in a winter storm. Ph.D. dissertation, Dept. of Meteorology, University of Wisconsin—Madison, 347 pp.

    • Search Google Scholar
    • Export Citation
  • Kajikawa, M., and A. J. Heymsfield, 1989: Aggregation of ice crystals in cirrus. J. Atmos. Sci., 46 , 31083121.

  • Klemp, J. B., and D. K. Lilly, 1978: Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci., 35 , 78107.

  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 10701096.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1992: Radiation and Cloud Processes in the Atmosphere. Oxford University Press, 487 pp.

  • Liu, H-C., P. K. Wang, and R. E. Schlesinger, 2003: A numerical study of cirrus clouds. Part II: Effects of ambient temperature, stability, radiation, ice microphysics, and microdynamics on cirrus evolution. J. Atmos. Sci., 60 , 10971119.

    • Search Google Scholar
    • Export Citation
  • McDonald, J. E., 1963: Use of the electrostatic analogy in studies of ice crystal growth. Z. Angew. Math. Phys., 14 , 610620.

  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31 , 708721.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53 , 17101723.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 2000: Parameterization of the Mie extinction and absorption coefficients for water clouds. J. Atmos. Sci., 57 , 13111326.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1978: Microphysics of Clouds and Precipitation. D. Reidel, 714 pp.

  • Ramanathan, V., E. J. Pitcher, R. C. Malone, and M. L. Blackmon, 1983: The response of a spectral general circulation model to refinements in radiative processes. J. Atmos. Sci., 40 , 605630.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and V. Ramanathan, 1989: Solar absorption of cirrus clouds and the maintenance of the tropical upper troposphere thermal structure. J. Atmos. Sci., 46 , 22932310.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Harshvardan, D. A. Dazlich, and T. G. Corsetti, 1989: Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J. Atmos. Sci., 46 , 19431970.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J. L., and G. Sommeria, 1986: Three-dimensional simulation of a convective storm: Sensitivity studies on subgrid parameterization and spatial resolution. J. Atmos. Sci., 43 , 26192635.

    • Search Google Scholar
    • Export Citation
  • Smythe, W. R., 1956: Charged right circular cylinders. J. Appl. Phys., 27 , 917920.

  • Smythe, W. R., 1962: Charged right circular cylinders. J. Appl. Phys., 33 , 29662967.

  • Starr, D. O'C., and S. K. Cox, 1985: Cirrus clouds. Part I. A cirrus cloud model. J. Atmos. Sci., 42 , 26632681.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Tremback, C. J., J. Powell, W. R. Cotton, and R. A. Pielke, 1987: The forward-in-time upstream advection scheme: Extension to higher order. Mon. Wea. Rev., 115 , 540555.

    • Search Google Scholar
    • Export Citation
  • van de Hulst, H. C., 1981: Light Scattering by Small Particles. Dover, 470 pp.

  • Verlinde, J., P. J. Flatau, and W. R. Cotton, 1990: Analytical solutions to the collection growth equation: Comparison with approximate methods and application to cloud microphysics parameterization schemes. J. Atmos. Sci., 47 , 28712880.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., C. H. Chuang, and N. L. Miller, 1985: Electrostatic, thermal and vapor density fields surrounding stationary columnar ice crystals. J. Atmos. Sci., 47 , 23712379.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., 1984: Optical constants of ice from ultraviolet to the microwave. Appl. Opt., 23 , 12061225.

  • Yee, H. C., 1987: Construction of explicit and implicit symmetric TVD schemes and their applications. J. Comput. Phys., 68 , 151179.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 188 44 7
PDF Downloads 47 14 4

A Numerical Study of Cirrus Clouds. Part I: Model Description

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, Madison, Wisconsin
Restricted access

Abstract

This article, the first of a two-part series, presents a detailed description of a two-dimensional numerical cloud model directed toward elucidating the physical processes governing the evolution of cirrus clouds. The two primary scientific purposes of this work are (a) to determine the evolution and maintenance mechanisms of cirrus clouds and try to explain why some cirrus can persist for a long time; and (b) to investigate the influence of certain physical factors such as radiation, ice crystal habit, latent heat, ventilation effects, and aggregation mechanisms on the evolution of cirrus. The second part will discuss sets of model experiments that were run to address objectives (a) and (b), respectively.

As set forth in this paper, the aforementioned two-dimensional numerical model, which comprises the research tool for this study, is organized into three modules that embody dynamics, microphysics, and radiation. The dynamic module develops a set of equations to describe shallow moist convection, also parameterizing turbulence by using a 1.5-order closure scheme. The microphysical module uses a double-moment scheme to simulate the evolution of the size distribution of ice particles. Heterogeneous and homogeneous nucleation of haze particles are included, along with other ice crystal processes such as diffusional growth, sedimentation, and aggregation. The radiation module uses a two-stream radiative transfer scheme to determine the radiative fluxes and heating rates, while the cloud optical properties are determined by the modified anomalous diffraction theory (MADT) for ice particles. One of the main advantages of this cirrus model is its explicit formulation of the microphysical and radiative properties as functions of ice crystal habit.

Corresponding author address: Dr. Pao K. Wang, Dept. of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, 1225 W. Dayton Street, Madison, WI 53706-1695. Email: pao@windy.aos.wisc.edu

Abstract

This article, the first of a two-part series, presents a detailed description of a two-dimensional numerical cloud model directed toward elucidating the physical processes governing the evolution of cirrus clouds. The two primary scientific purposes of this work are (a) to determine the evolution and maintenance mechanisms of cirrus clouds and try to explain why some cirrus can persist for a long time; and (b) to investigate the influence of certain physical factors such as radiation, ice crystal habit, latent heat, ventilation effects, and aggregation mechanisms on the evolution of cirrus. The second part will discuss sets of model experiments that were run to address objectives (a) and (b), respectively.

As set forth in this paper, the aforementioned two-dimensional numerical model, which comprises the research tool for this study, is organized into three modules that embody dynamics, microphysics, and radiation. The dynamic module develops a set of equations to describe shallow moist convection, also parameterizing turbulence by using a 1.5-order closure scheme. The microphysical module uses a double-moment scheme to simulate the evolution of the size distribution of ice particles. Heterogeneous and homogeneous nucleation of haze particles are included, along with other ice crystal processes such as diffusional growth, sedimentation, and aggregation. The radiation module uses a two-stream radiative transfer scheme to determine the radiative fluxes and heating rates, while the cloud optical properties are determined by the modified anomalous diffraction theory (MADT) for ice particles. One of the main advantages of this cirrus model is its explicit formulation of the microphysical and radiative properties as functions of ice crystal habit.

Corresponding author address: Dr. Pao K. Wang, Dept. of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, 1225 W. Dayton Street, Madison, WI 53706-1695. Email: pao@windy.aos.wisc.edu

Save