A New Look at the Problem of Tropical Cyclones in Vertical Shear Flow: Vortex Resiliency

Paul D. Reasor Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Paul D. Reasor in
Current site
Google Scholar
PubMed
Close
,
Michael T. Montgomery Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Michael T. Montgomery in
Current site
Google Scholar
PubMed
Close
, and
Lewis D. Grasso CIRA/Colorado State University, Fort Collins, Colorado

Search for other papers by Lewis D. Grasso in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new paradigm for the resiliency of tropical cyclone (TC) vortices in vertical shear flow is presented. To elucidate the basic dynamics, the authors follow previous work and consider initially barotropic vortices on an f plane. It is argued that the diabatically driven secondary circulation of the TC is not directly responsible for maintaining the vertical alignment of the vortex. Rather, an inviscid damping mechanism intrinsic to the dry adiabatic dynamics of the TC vortex suppresses departures from the upright state.

Recent work has demonstrated that tilted quasigeostrophic vortices consisting of a core of positive vorticity surrounded by a skirt of lesser positive vorticity align through projection of the tilt asymmetry onto vortex Rossby waves (VRWs) and their subsequent damping (VRW damping). This work is extended here to the finite Rossby number (Ro) regime characteristic of real TCs. It is shown that the VRW damping mechanism provides a direct means of reducing the tilt of intense cyclonic vortices (Ro > 1) in unidirectional vertical shear. Moreover, intense TC-like, but initially barotropic, vortices are shown to be much more resilient to vertical shearing than previously believed. For initially upright, observationally based TC-like vortices in vertical shear, the existence of a “downshear-left” tilt equilibrium is demonstrated when the VRW damping is nonnegligible.

On the basis of these findings, the axisymmetric component of the diabatically driven secondary circulation is argued to contribute indirectly to vortex resiliency against shear by increasing Ro and enhancing the radial gradient of azimuthal-mean potential vorticity. This, in addition to the reduction of static stability in moist ascent regions, increases the efficiency of the VRW damping mechanism.

Corresponding author address: Dr. Paul D. Reasor, Dept. of Meteorology, The Florida State University, Tallahassee, FL 32306-4520. Email: reasor@met.fsu.edu

Abstract

A new paradigm for the resiliency of tropical cyclone (TC) vortices in vertical shear flow is presented. To elucidate the basic dynamics, the authors follow previous work and consider initially barotropic vortices on an f plane. It is argued that the diabatically driven secondary circulation of the TC is not directly responsible for maintaining the vertical alignment of the vortex. Rather, an inviscid damping mechanism intrinsic to the dry adiabatic dynamics of the TC vortex suppresses departures from the upright state.

Recent work has demonstrated that tilted quasigeostrophic vortices consisting of a core of positive vorticity surrounded by a skirt of lesser positive vorticity align through projection of the tilt asymmetry onto vortex Rossby waves (VRWs) and their subsequent damping (VRW damping). This work is extended here to the finite Rossby number (Ro) regime characteristic of real TCs. It is shown that the VRW damping mechanism provides a direct means of reducing the tilt of intense cyclonic vortices (Ro > 1) in unidirectional vertical shear. Moreover, intense TC-like, but initially barotropic, vortices are shown to be much more resilient to vertical shearing than previously believed. For initially upright, observationally based TC-like vortices in vertical shear, the existence of a “downshear-left” tilt equilibrium is demonstrated when the VRW damping is nonnegligible.

On the basis of these findings, the axisymmetric component of the diabatically driven secondary circulation is argued to contribute indirectly to vortex resiliency against shear by increasing Ro and enhancing the radial gradient of azimuthal-mean potential vorticity. This, in addition to the reduction of static stability in moist ascent regions, increases the efficiency of the VRW damping mechanism.

Corresponding author address: Dr. Paul D. Reasor, Dept. of Meteorology, The Florida State University, Tallahassee, FL 32306-4520. Email: reasor@met.fsu.edu

Save
  • Arakawa, A., and V. R. Lamb, 1981: A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Wea. Rev., 109 , 1836.

    • Search Google Scholar
    • Export Citation
  • Bassom, A. P., and A. D. Gilbert, 1998: The spiral wind-up of vorticity in an inviscid planar vortex. J. Fluid Mech., 371 , 109140.

  • Bender, M. A., 1997: The effect of relative flow on the asymmetric structure in the interior of hurricanes. J. Atmos. Sci., 54 , 703724.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., J. F. Gamache, F. D. Marks, C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130 , 22912312.

    • Search Google Scholar
    • Export Citation
  • Case, K. M., 1960: Stability of inviscid plane Couette flow. Phys. Fluids, 3 , 143148.

  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60 , 366376.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and L. F. Bosart, 2001: Numerical simulations of the genesis of Hurricane Diana (1984). Part I: Control simulation. Mon. Wea. Rev., 129 , 18591881.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53 , 20762087.

  • DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14 , 326337.

    • Search Google Scholar
    • Export Citation
  • Flatau, M., and D. E. Stevens, 1989: Barotropic and inertial instabilities in the hurricane outflow layer. Geophys. Astrophys. Fluid Dyn., 47 , 118.

    • Search Google Scholar
    • Export Citation
  • Flatau, M., W. H. Schubert, and D. E. Stevens, 1994: The role of baroclinic processes in tropical cyclone motion: The influence of vertical tilt. J. Atmos. Sci., 51 , 25892601.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127 , 20442061.

  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129 , 22492269.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1986: The instability of barotropic circular vortices. Geophys. Astrophys. Fluid Dyn., 35 , 209233.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96 , 669700.

  • Hawkins, H. F., and D. T. Rubsam, 1968: Hurricane Hilda, 1964: II, The structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96 , 617636.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and F. P. Bretherton, 1972: Atmospheric frontogenesis models: Mathematical formulation and solution. J. Atmos. Sci., 29 , 1137.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121 , 821851.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2000a: The evolution of vortices in vertical shear. II: Large-scale asymmetries. Quart. J. Roy. Meteor. Soc., 126 , 31373159.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 2000b: The evolution of vortices in vertical shear. III: Baroclinic vortices. Quart. J. Roy. Meteor. Soc., 126 , 31613185.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 10701096.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58 , 10791090.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., R. E. Tuleya, and M. A. Bender, 1998: The GFDL hurricane prediction system and its performance in the 1995 hurricane season. Mon. Wea. Rev., 126 , 13061322.

    • Search Google Scholar
    • Export Citation
  • Lamb, H., 1932: Hydrodynamics. 6th ed. Dover, 732 pp.

  • Marks, F. D., R. A. Houze, and J. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert: Part I: Kinematic structure. J. Atmos. Sci., 49 , 919942.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., L. P. Graves, and M. T. Montgomery, 2003: A formal theory for vortex Rossby waves and vortex evolution. Geophys. Astrophys. Fluid Dyn., 97 , 275309.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 1999: Vortex Rossby waves and hurricane intensification in a barotropic model. J. Atmos. Sci., 56 , 16741687.

    • Search Google Scholar
    • Export Citation
  • Möller, J. D., and M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57 , 33663387.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123 , 435465.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and C. Lu, 1997: Free waves on barotropic vortices. Part I: Eigenmode structure. J. Atmos. Sci., 54 , 18681885.

  • Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55 , 31763207.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and J. L. Franklin, 1998: An assessment of the balance approximation in hurricanes. J. Atmos. Sci., 55 , 21932200.

  • Montgomery, M. T., J. D. Möller, and C. T. Nicklas, 1999: Linear and nonlinear vortex motion in an asymmetric balance shallow water model. J. Atmos. Sci., 56 , 749768.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., M. T. Montgomery, and L. D. Grasso, 2001: The wavenumber-one instability and trochoidal motion of hurricane-like vortices. J. Atmos. Sci., 58 , 32433270.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26 , 340.

  • Pearce, R. P., 1993: A critical review of progress in tropical cyclone physics including experimentation with numerical models. Tropical Cyclone Disasters, Peking University Press, 588 pp.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys., 49 , 6991.

  • Reasor, P. D., 2000: Horizontal vorticity redistribution and vortex alignment in developing and mature tropical cyclones. Ph.D. dissertation, Colorado State University, 166 pp. [Available from Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO 80523.].

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2001: Three-dimensional alignment and corotation of weak, TC-like vortices via linear vortex Rossby waves. J. Atmos. Sci., 58 , 23062330.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128 , 16531680.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1963: Some relations between wind and thermal structure of steady state hurricanes. J. Atmos. Sci., 20 , 276287.

  • Rivest, C., and B. F. Farrell, 1992: Upper-tropospheric synoptic-scale waves. Part II: Maintenance and excitation of quasi modes. J. Atmos. Sci., 49 , 21202138.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44 , 542561.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2003: On the symmetrization rate of an intense geophysical vortex. Dyn. Atmos. Oceans, 37 , 5588.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., D. H. E. Dubin, A. C. Cass, C. F. Driscoll, I. M. Lansky, and T. M. O'Neil, 2000: Inviscid damping of asymmetries on a two-dimensional vortex. Phys. Fluids, 12 , 23972412.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., M. T. Montgomery, and P. D. Reasor, 2002: A theory for the vertical alignment of a quasigeostrophic vortex. J. Atmos. Sci., 59 , 150168.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39 , 378394.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and M. T. Montgomery, 1993: A three-dimensional balance theory for rapidly rotating vortices. J. Atmos. Sci., 50 , 33223335.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I: The basic experiment. Mon. Wea. Rev., 91 , 99164.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., W. Ulrich, and G. Sneddon, 2000: On the dynamics of hurricane-like vortices in vertical shear flows. Quart. J. Roy. Meteor. Soc., 126 , 26532670.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., and R. Rotunno, 1989: Nonlinear aspects of symmetric instability. J. Atmos. Sci., 46 , 12851299.

  • Vandermeirsh, F., Y. Morel, and G. Sutyrin, 2002: Resistance of a coherent vortex to a vertical shear. J. Phys. Oceanogr., 32 , 30893100.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53 , 33133332.

  • Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47 , 242264.

  • Wu, C-C., and K. A. Emanuel, 1993: Interaction of a baroclinic vortex with background shear: Application to hurricane movement. J. Atmos. Sci., 50 , 6276.

    • Search Google Scholar
    • Export Citation
  • Zehr, R., 1992: Tropical cyclogenesis in the Western North Pacific. NOAA Tech. Rep. NESDIS 61, 181 pp.

  • Zehr, R., 2003: Environmental vertical wind shear with Hurricane Bertha (1996). Wea. Forecasting, 18 , 345356.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1113 281 34
PDF Downloads 832 240 25