The Resolution Dependence of Model Physics: Illustrations from Nonhydrostatic Model Experiments

Joon-Hee Jung Department of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Joon-Hee Jung in
Current site
Google Scholar
PubMed
Close
and
Akio Arakawa Department of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Akio Arakawa in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The goal of this paper is to gain insight into the resolution dependence of model physics, the parameterization of moist convection in particular, which is required for accurately predicting large-scale features of the atmosphere. To achieve this goal, experiments using a two-dimensional nonhydrostatic model with different resolutions are conducted under various idealized tropical conditions. For control experiments (CONTROL), the model is run as a cloud-system-resolving model (CSRM). Next, a “large-scale dynamics model” (LSDM) is introduced as a diagnostic tool, which is a coarser-resolution version of the same model but with only partial or no physics. Then, the LSDM is applied to an ensemble of realizations selected from CONTROL and a “required parameterized source” (RPS) is identified for the results of the LSDM to become consistent with CONTROL as far as the resolvable scales are concerned.

The analysis of RPS diagnosed in this way confirms that RPS is highly resolution dependent in the range of typical resolutions of mesoscale models even in ensemble/space averages, while “real source” (RS) is not. The time interval of implementing model physics also matters for RPS. It is emphasized that model physics in future prediction models should automatically produce these resolution dependencies so that the need for retuning parameterizations as resolution changes can be minimized.

Corresponding author address: Dr. Joon-Hee Jung, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80526

Abstract

The goal of this paper is to gain insight into the resolution dependence of model physics, the parameterization of moist convection in particular, which is required for accurately predicting large-scale features of the atmosphere. To achieve this goal, experiments using a two-dimensional nonhydrostatic model with different resolutions are conducted under various idealized tropical conditions. For control experiments (CONTROL), the model is run as a cloud-system-resolving model (CSRM). Next, a “large-scale dynamics model” (LSDM) is introduced as a diagnostic tool, which is a coarser-resolution version of the same model but with only partial or no physics. Then, the LSDM is applied to an ensemble of realizations selected from CONTROL and a “required parameterized source” (RPS) is identified for the results of the LSDM to become consistent with CONTROL as far as the resolvable scales are concerned.

The analysis of RPS diagnosed in this way confirms that RPS is highly resolution dependent in the range of typical resolutions of mesoscale models even in ensemble/space averages, while “real source” (RS) is not. The time interval of implementing model physics also matters for RPS. It is emphasized that model physics in future prediction models should automatically produce these resolution dependencies so that the need for retuning parameterizations as resolution changes can be minimized.

Corresponding author address: Dr. Joon-Hee Jung, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80526

Save
  • Arakawa, A., 2000: Future development of general circulation models. General Circulation Model Development: Past, Present, and Future, D. A. Randall, Ed., Academic Press, 721–780.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic airmass data sets. Quart. J. Roy. Meteor. Soc., 112 , 692709.

    • Search Google Scholar
    • Export Citation
  • Chen, J-M., 1991: Turbulence-scale condensation parameterization. J. Atmos. Sci., 48 , 15101512.

  • Frank, W. M., 1993: A hybrid parameterization with multiple closures. The Representation of Cumulus Convection in Numerical Models, K. A. Emanuel and D. J. Raymond, Eds., Amer. Meteor. Soc., 151–154.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., S. K. Krueger, and K. N. Liou, 1995: Interactions of radiation and convection in simulated tropical cloud clusters. J. Atmos. Sci., 52 , 13101328.

    • Search Google Scholar
    • Export Citation
  • Haltiner, G. J., and R. T. Williams, 1980: Numerical Prediction and Dynamic Meteorology. John Wiley and Sons, 477 pp.

  • Krueger, S. K., 1988: Numerical simulation of tropical cumulus clouds and their interaction with the subcloud layer. J. Atmos. Sci., 45 , 22212250.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., 2000: Cloud system modeling. General Circulation Model Development: Past, Present, and Future, D. A. Randall, Ed., Academic Press, 605–640.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., Q. Fu, K. N. Liou, and H-N. Chin, 1995a: Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteor., 34 , 281287.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., G. T. McLean, and Q. Fu, 1995b: Numerical simulation of the stratus-to-cumulus transition in the subtropical marine boundary layer. Part I: Boundary-layer structure. J. Atmos. Sci., 52 , 28392850.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31 , 12321240.

    • Search Google Scholar
    • Export Citation
  • Liu, C., M. W. Moncrieff, and W. W. Grabowski, 2001: Hierarchical modeling of tropical convective systems using explicit and parameterized approaches. Quart. J. Roy. Meteor. Soc., 127 , 493515.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., 1982: Interaction of a cumulus cloud ensemble with the large-scale environment. Part III: Semi-prognostic test of the Arakawa–Schubert cumulus parameterization. J. Atmos. Sci., 39 , 88103.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., H. E. Willoughby, and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci., 41 , 28362848.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., J. Smagorinsky, and R. F. Strickler, 1965: Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Wea. Rev., 93 , 769798.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., 1998: Large eddy simulation of atmospheric boundary layers. Clear and Cloudy Boundary Layers, A. A. M. Holstag and P. G. Duynkerke, Eds., Royal Neitherlands Academy of Arts and Sciences, 67–83.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., 1993: An overview of cumulus parameterization in mesoscale models. The Representation of Cumulus Convection in Numerical Models, K. A. Emanuel and D. J. Raymond, Eds., Amer. Meteor. Soc., 155–158.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and M. Dudek, 1992: Parameterization of convective precipitation in mesoscale numerical models: A critical review. Mon. Wea. Rev., 120 , 326344.

    • Search Google Scholar
    • Export Citation
  • Nasuno, T., and K. Saito, 2002: Resolution dependence of a tropical squall line. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 245–246.

    • Search Google Scholar
    • Export Citation
  • Richtmyer, R. D., and K. W. Morton, 1967: Difference Methods for Initial-Value Problems. Interscience, 406 pp.

  • Riehl, H., and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6 , 503538.

  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125 , 527548.

    • Search Google Scholar
    • Export Citation
  • Xie, S. C., and Coauthors, 2002: Intercomparison and evaluation of cumulus parameterizations under summertime midlatitude continental conditions. Quart. J. Roy. Meteor. Soc., 128 , 10951136.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and S. K. Krueger, 1991: Evaluation of cloudiness parameterizations using a cumulus ensemble model. Mon. Wea. Rev., 119 , 342367.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and Coauthors, 2002: An intercomparison of cloud-resolving models with the Atmospheric Radiation Measurement summer 1997 Intensive Observation Period data. Quart. J. Roy. Meteor. Soc., 128 , 593624.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. K. Esbensen, and J-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 386 60 1
PDF Downloads 118 23 3