• Alonso, C. V., , and R. L. Bingner, 2000: Goodwin Creek experimental watershed: A unique field laboratory. ASCE J. Hydraul. Eng, . 126 , 174177.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., 1953: Optical extinction by rainfall. J. Meteor, 10 , 486488.

  • Atlas, D., , and A. C. Chmela, 1957: Physical-synoptic variations of raindrop size parameters. Proc. Sixth Weather Radar Conf., Cambridge, MA, Amer. Meteor. Soc., 21–29.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., , and C. W. Ulbrich, 1977: Path- and area-integrated rainfall measurements by microwave attenuation in the 1–3-cm band. J. Appl. Meteor, 16 , 13221331.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., , and C. W. Ulbrich, 2000: An observationally based conceptual model of warm oceanic convective rain in the Tropics. J. Appl. Meteor, . 39 , 21652181.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., , and C. R. Williams, 2003: The anatomy of a continental tropical convective storm. J. Atmos. Sci, 60 , 315.

  • Atlas, D., , R. C. Srivastava, , and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys, 11 , 135.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., , C. W. Ulbrich, , F. D. Marks, , E. Amitai, , and C. R. Williams, 1999: Systematic variation of drop size and radar–rainfall relations. J. Geophys. Res, 104D , 61556169.

    • Search Google Scholar
    • Export Citation
  • Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev, 115 , 10531070.

  • Battan, L. J., 1973: Radar Observations of the Atmosphere. University of Chicago Press, 324 pp.

  • Battan, L. J., 1976: Vertical air motions and the ZR relation. J. Appl. Meteor, 15 , 11201121.

  • Beard, K. V., 1976: Terminal velocity of cloud and precipitation drops aloft. J. Atmos. Sci, 33 , 851864.

  • Beard, K. V., 1985: Simple altitude adjustments to raindrop velocities for Doppler radar analysis. J. Atmos. Oceanic Technol, 2 , 468471.

    • Search Google Scholar
    • Export Citation
  • Berry, E. X., , and M. R. Pranger, 1974: Equations for calculating the terminal velocities of water drops. J. Appl. Meteor, 13 , 108113.

    • Search Google Scholar
    • Export Citation
  • Best, A. C., 1950a: Empirical formulae for the terminal velocity of waterdrops falling through the atmosphere. Quart. J. Roy. Meteor. Soc, 76 , 302311.

    • Search Google Scholar
    • Export Citation
  • Best, A. C., 1950b: The size distribution of raindrops. Quart. J. Roy. Meteor. Soc, 76 , 1636.

  • Blanchard, D. C., , and A. T. Spencer, 1970: Experiments on the generation of raindrop size distributions by drop breakup. J. Atmos. Sci, 27 , 101108.

    • Search Google Scholar
    • Export Citation
  • Bradley, S. G., , and C. D. Stow, 1974: The measurement of charge and size of raindrops. Part II: Results and analysis at ground level. J. Appl. Meteor, 13 , 131147.

    • Search Google Scholar
    • Export Citation
  • Brazier-Smith, P. R., 1992: On the shape and fall velocities of raindrops. Quart. J. Roy. Meteor. Soc, 118 , 749766.

  • Bringi, V. N., , V. Chandrasekar, , J. Hubbert, , E. Gorgucci, , W. L. Randeu, , and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci, 60 , 354365.

    • Search Google Scholar
    • Export Citation
  • Brown, P. S., , and S. N. Whittlesey, 1992: Multiple equilibrium solutions in Bleck-type models of drop coalescence and breakup. J. Atmos. Sci, 49 , 23192324.

    • Search Google Scholar
    • Export Citation
  • Campos, E., , and I. Zawadzki, 2000: Instrumental uncertainties in the ZR relations. J. Appl. Meteor, 39 , 10881102.

  • Carbone, R. E., 1985: Comments on “Functional fits to some observed drop size distributions and parameterizations of rain.”. J. Atmos. Sci, 42 , 13461348.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., , and L. D. Nelson, 1978: The evolution of raindrop spectra in warm-based convective storms as observed and numerically modeled. J. Atmos. Sci, 35 , 23022314.

    • Search Google Scholar
    • Export Citation
  • Cataneo, R., , and G. E. Stout, 1968: Raindrop-size distributions in humid continental climates, and associated rainfall rate–radar reflectivity relationships. J. Appl. Meteor, 7 , 901907.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., , and V. N. Bringi, 1987: Simulation of radar reflectivity and surface measurements of rainfall. J. Atmos. Oceanic Technol, 4 , 464478.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., , and W. F. Krajewski, 1999: Radar–rain gauge comparisons under observational uncertainties. J. Appl. Meteor, 38 , 15191525.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., , M. L. Morrissey, , and W. F. Krajewski, 2000: Conditional bias in radar rainfall estimation. J. Appl. Meteor, 39 , 19411946.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., , C. R. Williams, , D. K. Rajopadhyaya, , S. K. Avery, , K. S. Gage, , and P. T. May, 2000: Drop-size distribution characteristics in tropical mesoscale convective systems. J. Appl. Meteor, 39 , 760777.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., 1974: A study in cloud phase parameterization using the gamma distribution. J. Atmos. Sci, 31 , 142155.

  • Cornford, G. S., 1967: Sampling errors in measurements of raindrop and cloud-droplet concentration. Meteor. Mag, 96 , 271282.

  • Doelling, I. G., , J. Joss, , and J. Riedl, 1998: Systematic variations of ZR relationships from drop size distributions measured in northern Germany during seven years. Atmos. Res, 47 , –48. 635649.

    • Search Google Scholar
    • Export Citation
  • Dotzek, N., , and K. D. Beheng, 2001: The influence of deep convective motions on the variability of ZR relations. Atmos. Res, 59 , –60. 1539.

    • Search Google Scholar
    • Export Citation
  • Dotzek, N., , and T. Fehr, 2003: Relationship between precipitation rates at the ground and aloft—A modeling study. J. Appl. Meteor, 42 , 12851301.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , and Z. Levin, 1986: The lognormal fit to raindrop spectra from frontal convective clouds in Israel. J. Climate Appl. Meteor, 25 , 13461363.

    • Search Google Scholar
    • Export Citation
  • Foote, G. B., , and P. S. duToit, 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor, 8 , 249253.

  • Fujiwara, M., 1965: Raindrop-size distribution from individual storms. J. Atmos. Sci, 22 , 585591.

  • Gertzman, H. S., , and D. Atlas, 1977: Sampling errors in the measurement of rain and hail parameters. J. Geophys. Res, 82 , 49554966.

  • Gossard, E. E., , R. G. Strauch, , D. C. Welsh, , and S. Y. Matrosov, 1992: Cloud layers, particle identification, and rain-rate profiles from ZRVf measurements by clear-air Doppler radars. J. Atmos. Oceanic Technol, 9 , 108119.

    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., , and J. S. Marshall, 1955: The effect of wind shear on falling precipitation. J. Meteor, 12 , 339349.

  • Gunn, R., , and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor, 6 , 243248.

  • Haddad, Z. S., , S. L. Durden, , and E. Im, 1996: Parameterizing the raindrop size distribution. J. Appl. Meteor, 35 , 313.

  • Hagen, M., , and S. E. Yuter, 2003: Relations between radar reflectivity, liquid-water content, and rainfall rate during the MAP SOP. Quart. J. Roy. Meteor. Soc, 129 , 477493.

    • Search Google Scholar
    • Export Citation
  • Hauser, D., , P. Amayenc, , B. Nutten, , and P. Waldteufel, 1984: A new optical instrument for simultaneous measurement of raindrop diameter and fall speed distributions. J. Atmos. Oceanic Technol, 1 , 256269.

    • Search Google Scholar
    • Export Citation
  • Hodson, M. C., 1986: Raindrop size distribution. J. Climate Appl. Meteor, 25 , 10701074.

  • Hosking, J. G., , and C. D. Stow, 1991: Ground-based measurements of raindrop fallspeeds. J. Atmos. Oceanic Technol, 8 , 137147.

  • Houze Jr., R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc, . 78 , 21792196.

    • Search Google Scholar
    • Export Citation
  • Hu, Z., , and R. C. Srivastava, 1995: Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci, 52 , 17611783.

    • Search Google Scholar
    • Export Citation
  • Hudson, N. W., 1963: Raindrop size distribution in high intensity storms. Rhod. J. Agric. Res, 1 , 611.

  • Illingworth, A. J., , and T. M. Blackman, 2002: The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations. J. Appl. Meteor, 41 , 286297.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., , T. M. Blackman, , and J. W. F. Goddard, 2000: Improved rainfall estimates in convective storms using polarization diversity radar. Hydrol. Earth Syst. Sci, 4 , 555563.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., , and A. B. Kostinski, 2001: Reconsideration of the physical and empirical origins of ZR relations in radar meteorology. Quart. J. Roy. Meteor. Soc, 127 , 517538.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., , and A. B. Kostinski, 2002a: Spurious power-law relations among rainfall and radar parameters. Quart. J. Roy. Meteor. Soc, 128 , 20452058.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., , and A. B. Kostinski, 2002b: When is rain steady? J. Appl. Meteor, 41 , 8390.

  • Jiang, H., , M. Sano, , and M. Sekine, 1996: Radar reflectivity and rainfall rate relation from Weibull raindrop-size distribution. IEICE Trans. Commun, E79-B. 797800.

    • Search Google Scholar
    • Export Citation
  • Jones, D. M. A., 1992: Raindrop spectra at the ground. J. Appl. Meteor, 31 , 12191225.

  • Joss, J., , and A. Waldvogel, 1967: Ein Spektrograph für Niederschlagstropfen mit automatischer Auswertung. Pure Appl. Geophys, 68 , 240246.

    • Search Google Scholar
    • Export Citation
  • Joss, J., , and A. Waldvogel, 1969: Raindrop size distribution and sampling size errors. J. Atmos. Sci, 26 , 566569.

  • Joss, J., , and E. G. Gori, 1978: Shapes of raindrop size distributions. J. Appl. Meteor, 17 , 10541061.

  • Kostinski, A. B., , and A. R. Jameson, 1999: Fluctuation properties of precipitation. Part III: On the ubiquity and emergence of the exponential drop size spectra. J. Atmos. Sci, 56 , 111121.

    • Search Google Scholar
    • Export Citation
  • Kozu, T., , and K. Nakamura, 1991: Rainfall parameter estimation from dual-radar measurements combining reflectivity profile and path- integrated attenuation. J. Atmos. Oceanic Technol, 8 , 259271.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., , and J. A. Smith, 1991: On the estimation of climatological ZR relationships. J. Appl. Meteor, 30 , 14361445.

  • Li, X., , and R. C. Srivastava, 2001: An analytical solution for raindrop evaporation and its application to radar rainfall measurements. J. Appl. Meteor, 40 , 16071616.

    • Search Google Scholar
    • Export Citation
  • List, R., 1988: A linear radar reflectivity–rainrate relationship for steady tropical rain. J. Atmos. Sci, 45 , 35643572.

  • List, R., , N. R. Donaldson, , and R. E. Stewart, 1987: Temporal evolution of drop spectra to collisional equilibrium in steady and pulsating rain. J. Atmos. Sci, 44 , 362372.

    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., , and J. Joss, 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol, 17 , 130139.

    • Search Google Scholar
    • Export Citation
  • Maki, M., , T. D. Keenan, , Y. Sasaki, , and K. Nakamura, 2001: Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia. J. Appl. Meteor, 40 , 13931412.

    • Search Google Scholar
    • Export Citation
  • Markowitz, A. H., 1976: Raindrop size distribution expressions. J. Appl. Meteor, 15 , 10291031.

  • Marshall, J. S., 1969: Power-law relations in radar meteorology. J. Appl. Meteor, 8 , 171172.

  • Marshall, J. S., , and W. Mc K. Palmer, 1948: The distribution of raindrops with size. J. Meteor, 5 , 165166.

  • Marshall, J. S., , R. C. Langille, , and W. Mc K. Palmer, 1947: Measurement of rainfall by radar. J. Meteor, 4 , 186192.

  • Meagher, J. P., , and Z. S. Haddad, 2002: Principal-component analysis for raindrops and its application to the remote sensing of rain. Quart. J. Roy. Meteor. Soc, 128 , 559571.

    • Search Google Scholar
    • Export Citation
  • Mueller, E. A., 1962: Raindrop size distributions at Miami, Florida. Research Rep. 9B, Illinois State Water Survey Meteorological Laboratory, University of Illinois, 281 pp.

    • Search Google Scholar
    • Export Citation
  • Ohtake, T., 1970: Factors affecting the size distribution of raindrops and snowflakes. J. Atmos. Sci, 27 , 804813.

  • Pasqualucci, F., 1982: The variation of drop-size distribution in convective storms: A comparison between theory and radar measurements. Geophys. Res. Lett, 9 , 839841.

    • Search Google Scholar
    • Export Citation
  • Rao, T. N., , D. N. Rao, , K. Mohan, , and S. Raghavan, 2001: Classification of tropical precipitating systems and associated ZR relationships. J. Geophys. Res, 106D , 1769917711.

    • Search Google Scholar
    • Export Citation
  • Rinehart, R. E., 1997: Radar for Meteorologists. 3d ed. Rinehart Publications, 428 pp.

  • Rogers, R. R., , I. I. Zawadzki, , and E. E. Gossard, 1991: Variation with altitude of the drop-size distribution in steady light rain. Quart. J. Roy. Meteor. Soc, 117 , 13411369.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 237– 258.

    • Search Google Scholar
    • Export Citation
  • Russchenberg, H. W. J., 1993: Doppler polarimetric radar measurements of the gamma drop size distribution of rain. J. Appl. Meteor, 32 , 18151825.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., , D. Zrnić, , and D. Atlas, 1997: Polarimetrically tuned R(Z) relations and comparison of radar rainfall methods. J. Appl. Meteor, 36 , 340349.

    • Search Google Scholar
    • Export Citation
  • Salles, C., , and J-D. Creutin, 2003: Instrumental uncertainties in ZR relationships and raindrop fall velocities. J. Appl. Meteor, 42 , 279290.

    • Search Google Scholar
    • Export Citation
  • Sauvageot, H., , and J-P. Lacaux, 1995: The shape of averaged drop size distributions. J. Atmos. Sci, 52 , 10701083.

  • Sekhon, R. S., , and R. C. Srivastava, 1971: Doppler radar observations of drop-size distributions in a thunderstorm. J. Atmos. Sci, 28 , 983994.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., , and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor, 15 , 6976.

    • Search Google Scholar
    • Export Citation
  • Sempere Torres, D., , J. M. Porrà, , and J-D. Creutin, 1994: A general formulation for raindrop size distribution. J. Appl. Meteor, 33 , 14941502.

    • Search Google Scholar
    • Export Citation
  • Sempere Torres, D., , J. M. Porrà, , and J-D. Creutin, 1998: Experimental evidence of a general description for raindrop size distribution properties. J. Geophys. Res, 103D , 17851797.

    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., , and P. I. Joe, 1994: Comparison of raindrop size distribution measurements by a Joss–Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSS Doppler radar. J. Atmos. Oceanic Technol, 11 , 874887.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 1993: Marked point process models of raindrop-size distributions. J. Appl. Meteor, 32 , 284296.

  • Smith, J. A., , and W. F. Krajewski, 1993: A modeling study of rainfall rate– reflectivity relationships. Water Resour. Res, 29 , 25052514.

    • Search Google Scholar
    • Export Citation
  • Smith, P. L., , Z. Liu, , and J. Joss, 1993: A study of sampling-variability effects in raindrop size observations. J. Appl. Meteor, 32 , 12591269.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1971: Size distribution of raindrops generated by their breakup and coalescence. J. Atmos. Sci, 28 , 410415.

  • Steiner, M., , and J. A. Smith, 1998: Convective versus stratiform rainfall: An ice-microphysical and kinematic conceptual model. Atmos. Res, 47 , –48. 317326.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , and J. A. Smith, 2000: Reflectivity, rain rate, and kinetic energy flux relationships based on raindrop spectra. J. Appl. Meteor, 39 , 19231940.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , J. A. Smith, , S. J. Burges, , C. V. Alonso, , and R. W. Darden, 1999: . Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation. Water Resour. Res, 35 , 24872503.

    • Search Google Scholar
    • Export Citation
  • Stout, G. E., , and E. A. Mueller, 1968: Survey of relationships between rainfall rate and radar reflectivity in the measurement of precipitation. J. Appl. Meteor, 7 , 465474.

    • Search Google Scholar
    • Export Citation
  • Testud, J., , S. Oury, , R. A. Black, , P. Amayenc, , and X. Dou, 2001: The concept of “normalized” distributions to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor, 40 , 11181140.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., , and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor, 35 , 355371.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., , A. Kruger, , and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor, 40 , 20832097.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., , A. Kruger, , W. F. Krajewski, , P. A. Kucera, , and A. J. Pereira Filho, 2002: . Measurements of drop size distribution in the southwestern Amazon basin. J. Geophys. Res.,107D, 8052, doi:10.1029/ 2001JD000355.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1953: On the measurement of precipitation intensity by radar. J. Meteor, 10 , 6667.

  • Uijlenhoet, R., 2001: Raindrop size distributions and radar reflectivity–rain rate relationships for radar hydrology. Hydrol. Earth Syst. Sci, 5 , 615627.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., , and J. N. M. Stricker, 1999: A consistent rainfall parameterization based on the exponential raindrop size distribution. J. Hydrol, 218 , 101127.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., , J. A. Smith, , and M. Steiner, 2003b: The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra. J. Atmos. Sci, 60 , 12201238.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., , M. Steiner, , and J. A. Smith, 2003c: Variability of raindrop size distributions in a squall line and implications for radar rainfall estimation. J. Hydrometeor, 4 , 4361.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor, 22 , 17641775.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1985: The effects of drop size distribution truncation on rainfall integral parameters and empirical relations. J. Climate Appl. Meteor, 24 , 580590.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1992: Effects of drop-size-distribution truncation on computer- simulations of dual-measurement radar methods. J. Appl. Meteor, 31 , 689699.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1994: Corrections to empirical relations derived from rainfall disdrometer data for effects due to drop size distribution truncation. Atmos. Res, 34 , 207215.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., , and D. Atlas, 1978: The rain parameter diagram: Methods and applications. J. Geophys. Res, 83C , 13191325.

  • Ulbrich, C. W., , and D. Atlas, 1998: Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor, 37 , 912923.

    • Search Google Scholar
    • Export Citation
  • Valdez, M. P., , and K. C. Young, 1985: Number fluxes in equilibrium raindrop populations—A Markov-chain analysis. J. Atmos. Sci, . 42 , 10241036.

    • Search Google Scholar
    • Export Citation
  • Wacker, U., 1995: Competition of precipitation particles in a model with parameterized cloud microphysics. J. Atmos. Sci, 52 , 25772589.

    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., 1974: The N0 jump in raindrop spectra. J. Atmos. Sci, . 31 , 10671078.

  • Waldvogel, A., 1975: Tropfenspektren, Niederschlagstyp and ZR Beziehungen. Meteor. Rundsch, 28 , 3336.

  • Weibull, W., 1951: A statistical distribution function of wide applicability. J. Appl. Mech.—Trans. ASME, 18 , 293297.

  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci, 41 , 16481661.

    • Search Google Scholar
    • Export Citation
  • Willis, P. T., 1985: Reply. J. Atmos. Sci, 42 , 13491350.

  • Willis, P. T., , and P. Tattleman, 1989: Drop-size distributions associated with intense rainfall. J. Appl. Meteor, 28 , 315.

  • Wilson, D. R., , A. J. Illingworth, , and T. M. Blackman, 1997: Differential Doppler velocity: A radar parameter for characterizing hydrometeor size distributions. J. Appl. Meteor, 36 , 649663.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., , and E. A. Brandes, 1979: Radar measurement of rainfall—A summary. Bull. Amer. Meteor. Soc, 60 , 10481058.

  • Wong, R. K. W., , and N. Chidambaram, 1985: Gamma size distribution and stochastic sampling errors. J. Climate Appl. Meteor, 24 , 568579.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., , and M. de Agostinho Antonio, 1988: Equilibrium raindrop size distributions in tropical rain. J. Atmos. Sci, 45 , 34523459.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 168 168 15
PDF Downloads 67 67 14

A Microphysical Interpretation of Radar Reflectivity–Rain Rate Relationships

View More View Less
  • 1 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
  • | 2 Department of Environmental Sciences, Wageningen University, Wageningen, Netherlands
© Get Permissions
Restricted access

Abstract

The microphysical aspects of the relationship between radar reflectivity Z and rainfall rate R are examined. Various concepts discussed in the literature are integrated into a coherent analytical framework and discussed with a focus on the interpretability of ZR relations from a microphysical point of view. The forward problem of analytically characterizing the ZR relationship based on exponential, gamma, and monodisperse raindrop size distributions is highlighted as well as the inverse problem of a microphysical interpretation of empirically obtained ZR relation coefficients. Three special modes that a ZR relationship may attain are revealed, depending on whether the variability of the raindrop size distribution is governed by variations of drop number density, drop size, or a coordinated combination thereof with constant ratio of mean drop size and number density. A rain parameter diagram is presented that assists in diagnosing these microphysical modes. The number-controlled case results in linear ZR relations that have been observed for steady and statistically homogeneous or equilibrium rainfall conditions. Most rainfall situations, however, exhibit a variability of drop spectra that is facilitated by a mix of variations of drop size and number density, which results in the well-known power-law ZR relationships. Significant uncertainties are found to be associated with the retrieval of microphysical information from the ZR relation coefficients, but even more so with shortcomings of the measurement of rainfall information and the subsequent processing of that data to obtain a ZR relation. Given a proper consideration of the uncertainties, however, valuable microphysical information may be obtained, particularly as a result of long- term monitoring of rainfall for fixed observational settings but also through comparisons among different climatic rainfall regimes.

Corresponding author address: Dr. Matthias Steiner, Dept. of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544. Email: msteiner@princeton.edu

Abstract

The microphysical aspects of the relationship between radar reflectivity Z and rainfall rate R are examined. Various concepts discussed in the literature are integrated into a coherent analytical framework and discussed with a focus on the interpretability of ZR relations from a microphysical point of view. The forward problem of analytically characterizing the ZR relationship based on exponential, gamma, and monodisperse raindrop size distributions is highlighted as well as the inverse problem of a microphysical interpretation of empirically obtained ZR relation coefficients. Three special modes that a ZR relationship may attain are revealed, depending on whether the variability of the raindrop size distribution is governed by variations of drop number density, drop size, or a coordinated combination thereof with constant ratio of mean drop size and number density. A rain parameter diagram is presented that assists in diagnosing these microphysical modes. The number-controlled case results in linear ZR relations that have been observed for steady and statistically homogeneous or equilibrium rainfall conditions. Most rainfall situations, however, exhibit a variability of drop spectra that is facilitated by a mix of variations of drop size and number density, which results in the well-known power-law ZR relationships. Significant uncertainties are found to be associated with the retrieval of microphysical information from the ZR relation coefficients, but even more so with shortcomings of the measurement of rainfall information and the subsequent processing of that data to obtain a ZR relation. Given a proper consideration of the uncertainties, however, valuable microphysical information may be obtained, particularly as a result of long- term monitoring of rainfall for fixed observational settings but also through comparisons among different climatic rainfall regimes.

Corresponding author address: Dr. Matthias Steiner, Dept. of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544. Email: msteiner@princeton.edu

Save