• Andrews, A. E., and Coauthors, 2001: Mean ages of stratospheric air derived from in situ observations of CO2, CH4 and N2O. J. Geophys. Res, 106D , 3229532314.

    • Search Google Scholar
    • Export Citation
  • Barry, L., , G. C. Craig, , and J. Thuburn, 2000: A GCM investigation into the nature of baroclinic adjustment. J. Atmos. Sci, 57 , 11411155.

    • Search Google Scholar
    • Export Citation
  • Barry, L., , G. C. Craig, , and J. Thuburn, 2002: Poleward heat transport by the atmospheric heat engine. Nature, 415 , 774777.

  • Bartels, J., , D. Peters, , and G. Schmitz, 1998: Climatological Ertel's potential-vorticity flux and mean meridional circulation in the extratropical troposphere–lower stratosphere. Ann. Geophys, 16 , 250265.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., , and T. G. Shepherd, 1983: Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci, 40 , 164184.

  • Bourke, W., 1974: A multilevel spectral model. I. Formulation and hemispheric integrations. Mon. Wea. Rev, 102 , 687701.

  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor, 4 , 135163.

  • Charney, J. G., , and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci, 19 , 159172.

    • Search Google Scholar
    • Export Citation
  • Corrsin, S., 1974: Limitations of gradient transport models in random walks and in turbulence. Advances in Geophysics, Vol. 18A, Academic Press, 25–60.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1999: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Texts in Applied Mathematics, Vol. 32, Springer, 465 pp.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 , 3352.

  • Emanuel, K. A., 1988: Observational evidence of slantwise convective adjustment. Mon. Wea. Rev, 116 , 18051816.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., 2002: The role of water in atmospheric dynamics and climate. Meteorology at the Millennium, R. P. Pearce, Ed., International Geophysics Series, Vol. 83, Academic Press, 62–71.

  • Goody, R. M., , and Y. L. Yung, 1989: Atmospheric Radiation: Theoretical Basis. 2d ed. Oxford University Press, 519 pp.

  • Hall, T. M., , and R. A. Plumb, 1994: Age as a diagnostic of stratospheric transport. J. Geophys. Res, 99D , 10591070.

  • Haynes, P., , and E. Shuckburgh, 2000: Effective diffusivity as a diagnostic of atmospheric transport. 2. Troposphere and lower stratosphere. J. Geophys. Res, 105D , 2279522810.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., , J. Scinocca, , and M. Greenslade, 2001: Formation and maintenance of the extratropical tropopause by baroclinic eddies. Geophys. Res. Lett, 28 , 41794182.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1982: On the height of the tropopause and the static stability of the troposphere. J. Atmos. Sci, 39 , 412417.

  • Held, I. M., 1999: The macroturbulence of the troposphere. Tellus, 51A– B , 5970.

  • Held, I. M., , and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc, 75 , 18251830.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and V. D. Larichev, 1996: A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta-plane. J. Atmos. Sci, 53 , 946952.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and T. Schneider, 1999: The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci, 56 , 16881697.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., , P. H. Haynes, , M. E. McIntyre, , A. R. Douglass, , R. B. Rood, , and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys, 33 , 403439.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , M. E. McIntyre, , and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc, 111 , 877946.

    • Search Google Scholar
    • Export Citation
  • James, I. N., , and L. J. Gray, 1986: Concerning the effect of surface drag on the circulation of a baroclinic planetary atmosphere. Quart. J. Roy. Meteor. Soc, 112 , 12311250.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., 1989: The forcing and maintenance of global monsoonal circulations: An isentropic analysis. Advances in Geophysics, Vol. 31, Academic Press, 43–304.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., 1994: Hemispheric surface air temperature variations: A reanalysis and an update up to 1993. J. Climate, 7 , 17941802.

  • Juckes, M. N., 2000: The static stability of the midlatitude troposphere: The relevance of moisture. J. Atmos. Sci, 57 , 30503057.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc, 77 , 437471.

  • Lindzen, R. S., 1993: Baroclinic neutrality and the tropopause. J. Atmos. Sci, 50 , 11481151.

  • Lindzen, R. S., , and B. Farrell, 1980: The role of the polar regions in global climate, and a new parameterization of global heat transport. Mon. Wea. Rev, 108 , 20642079.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7 , 157167.

  • Mahlman, J. D., 1997: Dynamics of transport processes in the upper troposphere. Science, 276 , 10791083.

  • Nakamura, N., 1996: Two-dimensional mixing, edge formation, and permeability diagnosed in an area coordinate. J. Atmos. Sci, 53 , 15241537.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., , and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Phillips, N. A., 1954: Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus, 6 , 273286.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci, 48 , 688697.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1975: Waves and turbulence on a β-plane. J. Fluid Mech, 69 , 417443.

  • Rhines, P. B., , and W. R. Holland, 1979: A theoretical discussion of eddy-driven mean flows. Dyn. Atmos. Oceans, 3 , 289325.

  • Salmon, R., 1998: Lectures on Geophysical Fluid Dynamics. Oxford University Press, 378 pp.

  • Santer, B. D., , J. J. Hnilo, , T. M. L. Wigley, , J. S. Boyle, , C. Doutriaux, , M. Fiorino, , D. E. Parker, , and K. E. Taylor, 1999: Uncertainties in observationally based estimates of temperature change in the free atmosphere. J. Geophys. Res, 104D , 64056333.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2003a: Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: Decadal changes. J. Geophys. Res.,108, 4002, doi: 10.1029/2002JD002258.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2003b: Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301 , 479483.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2003: Zonal momentum balance, potential vorticity dynamics, and mass fluxes on near-surface isentropes. [Available online at www.gps.caltech.edu/;sltapio/.].

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., , and G. K. Vallis, 2002: The scales and equilibration of midocean eddies: Forced-dissipative flow. J. Phys. Oceanogr, 32 , 16991720.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1972: A simplified radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci, 29 , 405418.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1978: Baroclinic adjustment. J. Atmos. Sci, 35 , 561571.

  • Stone, P. H., , and B. Nemet, 1996: Baroclinic adjustment: A comparison between theory, observations, and models. J. Atmos. Sci, 53 , 16631674.

    • Search Google Scholar
    • Export Citation
  • Thuburn, J., , and G. C. Craig, 1997: GCM tests of theories for the height of the tropopause. J. Atmos. Sci, 54 , 869882.

  • Thuburn, J., , and G. C. Craig, 2000: Stratospheric influence on tropopause height: The radiative constraint. J. Atmos. Sci, 57 , 1728.

  • Treguier, A. M., , I. M. Held, , and V. D. Larichev, 1997: On the parameterization of quasigeostrophic eddies in primitive equation ocean models. J. Phys. Oceanogr, 27 , 567580.

    • Search Google Scholar
    • Export Citation
  • Tung, K. K., 1986: Nongeostrophic theory of zonally averaged circulation. Part I: Formulation. J. Atmos. Sci, 43 , 26002618.

  • Vallis, G. K., 1988: Numerical studies of eddy transport properties in eddy-resolving and parameterized models. Quart. J. Roy. Meteor. Soc, 114 , 183204.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., , and M. E. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr, 23 , 13461362.

    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., , and V. Ramanathan, 1995: Deductions from a simple climate model: Factors governing surface temperature and atmospheric thermal structure. J. Geophys. Res, 100D , 1158511591.

    • Search Google Scholar
    • Export Citation
  • Welch, W. T., , and K. K. Tung, 1998: On the equilibrium spectrum of transient waves in the atmosphere. J. Atmos. Sci, 55 , 28332851.

  • Xu, K-M., , and K. A. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev, 117 , 14711479.

  • Yang, H., , K. K. Tung, , and E. Olaguer, 1990: Nongeostrophic theory of zonally averaged circulation. Part II: Eliassen–Palm flux divergence and isentropic mixing coefficient. J. Atmos. Sci, 47 , 215241.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 340 341 27
PDF Downloads 139 139 17

The Tropopause and the Thermal Stratification in the Extratropics of a Dry Atmosphere

View More View Less
  • 1 California Institute of Technology, Pasadena, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A dynamical constraint on the extratropical tropopause height and thermal stratification is derived by considerations of entropy fluxes, or isentropic mass fluxes, and their different magnitudes in the troposphere and stratosphere. The dynamical constraint is based on a relation between isentropic mass fluxes and eddy fluxes of potential vorticity and surface potential temperature and on diffusive eddy flux closures. It takes baroclinic eddy fluxes as central for determining the extratropical tropopause height and thermal stratification and relates the tropopause potential temperature approximately linearly to the surface potential temperature and its gradient.

Simulations with an idealized GCM point to the possibility of an extratropical climate in which baroclinic eddy fluxes maintain a statically stable thermal stratification and, in interaction with large-scale diabatic processes, lead to the formation of a sharp tropopause. The simulations show that the extratropical tropopause height and thermal stratification are set locally by extratropical processes and do not depend on tropical processes and that, across a wide range of atmospheric circulations, the dynamical constraint describes the relation between tropopause and surface potential temperatures well. An analysis of observational data shows that the dynamical constraint, derived for an idealized dry atmosphere, can account for interannual variations of the tropopause height and thermal stratification in the extratropics of the earth's atmosphere.

The dynamical constraint implies that if baroclinic eddies determine the tropopause height and thermal stratification, an atmosphere organizes itself into a state in which nonlinear interactions among eddies are inhibited. The inhibition of nonlinear eddy–eddy interactions offers an explanation for the historic successes of linear and weakly nonlinear models of large-scale extratropical dynamics.

Corresponding author address: Tapio Schneider, California Institute of Technology, Mail Code 100-23, 1200 E. California Blvd., Pasadena, CA 91125. Email: tapio@gps.caltech.edu

Abstract

A dynamical constraint on the extratropical tropopause height and thermal stratification is derived by considerations of entropy fluxes, or isentropic mass fluxes, and their different magnitudes in the troposphere and stratosphere. The dynamical constraint is based on a relation between isentropic mass fluxes and eddy fluxes of potential vorticity and surface potential temperature and on diffusive eddy flux closures. It takes baroclinic eddy fluxes as central for determining the extratropical tropopause height and thermal stratification and relates the tropopause potential temperature approximately linearly to the surface potential temperature and its gradient.

Simulations with an idealized GCM point to the possibility of an extratropical climate in which baroclinic eddy fluxes maintain a statically stable thermal stratification and, in interaction with large-scale diabatic processes, lead to the formation of a sharp tropopause. The simulations show that the extratropical tropopause height and thermal stratification are set locally by extratropical processes and do not depend on tropical processes and that, across a wide range of atmospheric circulations, the dynamical constraint describes the relation between tropopause and surface potential temperatures well. An analysis of observational data shows that the dynamical constraint, derived for an idealized dry atmosphere, can account for interannual variations of the tropopause height and thermal stratification in the extratropics of the earth's atmosphere.

The dynamical constraint implies that if baroclinic eddies determine the tropopause height and thermal stratification, an atmosphere organizes itself into a state in which nonlinear interactions among eddies are inhibited. The inhibition of nonlinear eddy–eddy interactions offers an explanation for the historic successes of linear and weakly nonlinear models of large-scale extratropical dynamics.

Corresponding author address: Tapio Schneider, California Institute of Technology, Mail Code 100-23, 1200 E. California Blvd., Pasadena, CA 91125. Email: tapio@gps.caltech.edu

Save