• Awaka, J., , T. Iguchi, , H. Kumagai, , and K. Okamoto, 1997: Rain type classification algorithm for the TRMM precipitation radar. Proc. IEEE 1997 Int. Geoscience and Remote Sensing Symp., Singapore, IEEE, 1633–1635.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., , and H. H. Hendon, 1998: Calculating monthly radiative fluxes and heating rates from monthly cloud observations. J. Atmos. Sci, 55 , 34713491.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., , and H. H. Hendon, 2000: Cloud radiative forcing of the low-latitude tropospheric circulation: Linear calculations. J. Atmos. Sci, 57 , 22252245.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., , A. B. Phillips, , and G. R. North, 2003: Comparison of TRMM rainfall retrievals with rain gauge data from the TAO/ TRITON buoy array. Geophys. Res. Lett.,30, 1757, doi:10.1029/ 2003GL017552.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., , S. E. Zebiak, , and M. A. Cane, 2001: Relative roles of elevated heating and surface temperature gradients in driving anomalous surface winds over tropical oceans. J. Atmos. Sci, 58 , 13711394.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., , and S. A. Rutledge, 1998: Vertical motion, diabatic heating, and rainfall characteristics in north Australia convective systems. Quart. J. Roy. Meteor. Soc, 124 , 11331162.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1985: Linear response of a stratified tropical atmosphere to convective forcing. J. Atmos. Sci, 42 , 19441959.

  • Donner, L. J., , C. J. Seman, , R. S. Hemler, , and S. Fan, 2001: A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: Thermodynamic and hydrological aspects in a general circulation model. J. Climate, 14 , 34443463.

    • Search Google Scholar
    • Export Citation
  • Fowler, L. D., , and D. A. Randall, 2002: Interactions between cloud microphysics and cumulus convection in a general circulation model. J. Atmos. Sci, 59 , 30743098.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., , and J. L. McBride, 1989: The vertical distribution of heating in AMEX and GATE cloud clusters. J. Atmos. Sci, 46 , 34643478.

    • Search Google Scholar
    • Export Citation
  • Geisler, J. E., 1981: A linear model of the Walker cell. J. Atmos. Sci, 38 , 13901400.

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc, 106 , 447462.

  • Gray, W. M., , and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev, 105 , 11711188.

  • Hartmann, D. L., , H. H. Hendon, , and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci, 41 , 113121.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., , and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci, 44 , 828841.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , M. Ting, , and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15 , 21252144.

  • Hoskins, B. J., , and M. J. Rodwell, 1995: A model of the Asian summer monsoon. Part I: The global scale. J. Atmos. Sci, 52 , 13291340.

  • Houze Jr., R. A., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60 , 396410.

  • Houze Jr., R. A., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc, 115 , 425461.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Houze Jr., R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc, 78 , 21792196.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , T. Kozu, , R. Meneghini, , J. Awaka, , and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor, 39 , 20382052.

    • Search Google Scholar
    • Export Citation
  • Jin, F., , and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci, 52 , 307319.

  • Johnson, R. H., 1984: Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implications for cumulus parameterization. Mon. Wea. Rev, 112 , 15901601.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , and X. Lin, 1997: Episodic tradewind regimes over the western Pacific warm pool. J. Atmos. Sci, 54 , 20202034.

  • Johnson, R. H., , T. M. Rickenbach, , S. A. Rutledge, , P. E. Ciesielski, , and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12 , 23972418.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., , J. J. Hack, , G. B. Bonan, , B. A. Boville, , D. L. Williamson, , and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc, 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Kozu, T., and Coauthors, 2001: Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE Trans. Geosci. Remote Sens, 39 , 102116.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , W. Barnes, , T. Kozu, , J. Shiue, , and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol, 15 , 809817.

    • Search Google Scholar
    • Export Citation
  • Lin, J., , B. Mapes, , M. Zhang, , and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian Oscillation. J. Atmos. Sci, 61 , 296309.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , and R. A. Houze Jr., 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci, 52 , 18071828.

    • Search Google Scholar
    • Export Citation
  • Newman, M., , P. D. Sardeshmukh, , and J. W. Bergman, 2000: An assessment of the NCEP, NASA, and ECMWF reanalyses over the tropical west Pacific warm pool. Bull. Amer. Meteor. Soc, 81 , 4148.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., 1994: On the dynamical basis for the Asian summer monsoon rainfall–El Niño relationship. J. Climate, 7 , 17501771.

  • Nigam, S., , C. Chung, , and E. DeWeaver, 2000: ENSO diabatic heating in ECMWF and NCEP–NCAR reanalyses, and NCAR CCM3 simulation. J. Climate, 13 , 31523171.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., , and S. Esbensen, 1974: Heat and moisture budget analyses using BOMEX data. Mon. Wea. Rev, 102 , 1728.

  • Olson, W. S., , C. D. Kummerow, , Y. Hong, , and W. K. Tao, 1999: Atmospheric latent heating distributions in the Tropics derived from satellite passive microwave radiometer measurements. J. Appl. Meteor, 38 , 633664.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc, 72 , 220.

  • Rossow, W. B., , and L. C. Garder, 1993: Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J. Climate, 6 , 23412369.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , and R. A. Houze Jr., 2003a: Stratiform rain in the Tropics as seen by the TRMM precipitation radar. J. Climate, 16 , 17391756.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , and R. A. Houze Jr., 2003b: The TRMM precipitation radar's view of shallow, isolated rain. J. Appl. Meteor, 42 , 15191524.

    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., , and M. J. McPhaden, 2003: Multiple time- and space-scale comparisons of ATLAS buoy rain gauge measurements with TRMM satellite precipitation measurements. J. Appl. Meteor, 42 , 10451059.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., , R. F. Adler, , and G. R. North, 1988: Proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc, 69 , 278295.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , R. A. Houze Jr., , and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor, 34 , 19782007.

    • Search Google Scholar
    • Export Citation
  • Sui, C-H., , and K-M. Lau, 1989: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part II: Structure and propagation of mobile wave-CISK modes and their modification by lower boundary forcings. J. Atmos. Sci, 46 , 3756.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., , J. Simpson, , S. Lang, , M. McCumber, , R. Adler, , and R. Penc, 1990: An algorithm to estimate the heating budget from vertical hydrometeor profiles. J. Appl. Meteor, 29 , 12321244.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., and Coauthors, 2001: Retrieved vertical profiles of latent heat release using TRMM rainfall products for February 1998. J. Appl. Meteor, 40 , 957982.

    • Search Google Scholar
    • Export Citation
  • Thompson Jr., R. M., , S. W. Payne, , E. E. Recker, , and R. J. Reed, 1979: Structure and properties of synoptic-scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. J. Atmos. Sci, 36 , 5372.

    • Search Google Scholar
    • Export Citation
  • Ting, M., , and P. D. Sardeshmukh, 1993: Factors determining the extratropical response to equatorial diabatic heating anomalies. J. Atmos. Sci, 50 , 907918.

    • Search Google Scholar
    • Export Citation
  • Valdes, P. J., , and B. J. Hoskins, 1989: Linear stationary wave simulation of the time-mean climatological flow. J. Atmos. Sci, 46 , 25092527.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , A. Shi, , J. R. Lanzante, , and A. H. Oort, 1999: The Hadley circulation: Assessing NCEP/NCAR reanalysis and sparse in-situ estimates. Climate Dyn, 15 , 719735.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , and M. Ting, 1999: Seasonal cycle of the climatological stationary waves in the NCEP–NCAR reanalysis. J. Atmos. Sci, 56 , 38923919.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and G. L. Stephens, 1980: Tropical upper-tropospheric extended clouds: Inferences from winter MONEX. J. Atmos. Sci, 37 , 15211541.

    • Search Google Scholar
    • Export Citation
  • White, G., , and S. Saha, 1995: Three-dimensional diabatic heating fields from the NCEP/NCAR reanalysis. Proc. 20th Climate Diagnostics Workshop, Seattle, WA, U.S. Department of Commerce, 284–287.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., , E. S. Sarachik, , and D. S. Battisti, 2000: Vertical structure of convective heating and the three-dimensional structure of the forced circulation on an equatorial beta plane. J. Atmos. Sci, 57 , 21692187.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 474 474 35
PDF Downloads 343 343 28

The Tropical Dynamical Response to Latent Heating Estimates Derived from the TRMM Precipitation Radar

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A 3-yr (1998–2000) climatology of near-surface rainfall and stratiform rain fraction observed by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) was used to calculate the four-dimensional distribution of tropical latent heating on seasonal-to-annual time scales. The TRMM-derived latent heating was then used to force an idealized primitive equation model using an initial value approach in order to obtain the quasi-steady-state, nonlinear, zonally asymmetric atmospheric response to precipitating tropical cloud systems. In agreement with previous studies, an increase in stratiform rain fraction elevates circulation centers and strengthens the upper-level response. Furthermore, horizontal variations in the vertical heating profile implied by the PR stratiform rain fraction pattern lead to circulation anomalies of varying height and vertical extent that are not present when the model is forced with a vertically uniform heating field. During El Niño, the trans-Pacific gradient in stratiform rain fraction that is normally present becomes more pronounced and the model response becomes even more sensitive to the horizontal variability of the latent heating vertical structure. When the heating field is modified to take into account the effects of nonprecipitating cumulus and cloud radiative forcing within the regions of tropical precipitating cloud systems, the overall pattern of the model response to the TRMM-derived latent heating is reinforced, as is the model's sensitivity to the variability in the latent heating vertical structure.

Corresponding author address: Professor Courtney Schumacher, Department of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77843-3150. Email: courtney@ariel.met.tamu.edu

Abstract

A 3-yr (1998–2000) climatology of near-surface rainfall and stratiform rain fraction observed by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) was used to calculate the four-dimensional distribution of tropical latent heating on seasonal-to-annual time scales. The TRMM-derived latent heating was then used to force an idealized primitive equation model using an initial value approach in order to obtain the quasi-steady-state, nonlinear, zonally asymmetric atmospheric response to precipitating tropical cloud systems. In agreement with previous studies, an increase in stratiform rain fraction elevates circulation centers and strengthens the upper-level response. Furthermore, horizontal variations in the vertical heating profile implied by the PR stratiform rain fraction pattern lead to circulation anomalies of varying height and vertical extent that are not present when the model is forced with a vertically uniform heating field. During El Niño, the trans-Pacific gradient in stratiform rain fraction that is normally present becomes more pronounced and the model response becomes even more sensitive to the horizontal variability of the latent heating vertical structure. When the heating field is modified to take into account the effects of nonprecipitating cumulus and cloud radiative forcing within the regions of tropical precipitating cloud systems, the overall pattern of the model response to the TRMM-derived latent heating is reinforced, as is the model's sensitivity to the variability in the latent heating vertical structure.

Corresponding author address: Professor Courtney Schumacher, Department of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77843-3150. Email: courtney@ariel.met.tamu.edu

Save