• Aeberhardt, M., , M. Blatter, , and T. F. Stocker, 2000: Variability on the century time scale and regime changes in a stochastically forced zonally averaged ocean–atmosphere model. Geophys. Res. Lett, 27 , 13031306.

    • Search Google Scholar
    • Export Citation
  • An, S-I., , and F-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17 , 23992412.

  • Atlas, R., , R. Hoffman, , S. Bloom, , J. Jusem, , and J. Ardizzone, 1996: A multiyear global surface wind velocity dataset using SSM/I wind observations. Bull. Amer. Meteor. Soc, 77 , 869882.

    • Search Google Scholar
    • Export Citation
  • Bates, N. R., , and L. Merlivat, 2001: The influence of short-term wind variability on air–sea CO2 exchange. Geophys. Res. Lett, 28 , 32813284.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., , and S. E. Zebiak, 2000: Surface wind over tropical oceans: Diagnosis of the momentum balance, and modeling the linear friction coefficient. J. Climate, 13 , 17331747.

    • Search Google Scholar
    • Export Citation
  • Chin, T., , R. Milliff, , and W. Large, 1998: Basin-scale, high-wavenumber sea surface wind fields from a multiresolution analysis of scatterometer data. J. Atmos. Oceanic Technol, 15 , 741763.

    • Search Google Scholar
    • Export Citation
  • Deser, C., 1993: Diagnosis of the surface momentum balance over the tropical Pacific Ocean. J. Climate, 6 , 6474.

  • Deser, C., 1994: Daily surface wind variations over the equatorial Pacific Ocean. J. Geophys. Res, 99 (D11) 2307123078.

  • Fairall, C. W., , E. F. Bradley, , J. E. Hare, , A. A. Grachev, , and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Gardiner, C. W., 1997: Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences. Springer, 442 pp.

  • Grachev, A. A., , and C. W. Fairall, 2001: Upward momentum transfer in the marine boundary layer. J. Phys. Oceanogr, 31 , 16981711.

  • Haltiner, G. J., , and R. T. Williams, 1980: Numerical Prediction and Dynamic Meteorology. Wiley, 477 pp.

  • Hannachi, A., , D. Stephenson, , and K. Sperber, 2003: Probability-based methods for quantifying nonlinearity in the ENSO. Climate Dyn, 20 , 241256.

    • Search Google Scholar
    • Export Citation
  • Imkeller, P., , and A. H. Monahan, 2002: Conceptual stochastic climate models. Stochast. Dyn, 2 , 311326.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc, 77 , 437471.

  • Kleeman, R., , and A. Moore, 1997: A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J. Atmos. Sci, 54 , 753767.

    • Search Google Scholar
    • Export Citation
  • Kloeden, P. E., , and E. Platen, 1992: Numerical Solution of Stochastic Differential Equations. Springer-Verlag, 632 pp.

  • Kuhlbrodt, T., , and A. H. Monahan, 2003: Stochastic stability of open-ocean deep convection. J. Phys. Oceanogr, 33 , 27642780.

  • Kuhlbrodt, T., , S. Titz, , U. Feudel, , and S. Rahmstorf, 2001: A simple model of seasonal open ocean convection. Part II: Labrador Sea stability and stochastic forcing. Ocean Dyn, 52 , 3649.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., , D. Vickers, , J. Howell, , J. Højstrup, , J. M. Wilczak, , J. Edson, , and J. Hare, 1996: Sea surface drag coefficients in the Risø Air Sea Experiment. J. Geophys. Res, 101 , 1432714335.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., , D. Vickers, , P. Frederickson, , K. Davidson, , and A-S. Smedman, 2003: Sea-surface aerodynamic roughness. J. Geophys. Res.,108, 3171, doi:10.1029/2002JC001383.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , I. Timofeyev, , and E. Vanden-Eijnden, 2001: A mathematical framework for stochastic climate models. Commun. Pure Appl. Math, 54 , 891974.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , I. Timofeyev, , and E. Vanden-Eijnden, 2003: Systematic strategies for stochastic mode reduction in climate. J. Atmos. Sci, 60 , 17051722.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M., and Coauthors, 1998: The Tropical Ocean–Global Atmosphere (TOGA) observing system: A decade of progress. J. Geophys. Res, 103 , 1416914240.

    • Search Google Scholar
    • Export Citation
  • Milliff, R., , W. Large, , J. Morzel, , and G. Danabasoglu, 1999: Ocean general circulation model sensitivity to forcing from scatterometer winds. J. Geophys. Res, 104C , 1133711358.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2001: Nonlinear principal component analysis: Tropical Indo–Pacific sea surface temperature and sea level pressure. J. Climate, 14 , 219233.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2002a: Lyapunov exponents of a simple stochastic model of the thermally and wind-driven ocean circulation. Dyn. Atmos. Oceans, 35 , 363388.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2002b: Stabilization of climate regimes by noise in a simple model of the thermohaline circulation. J. Phys. Oceanogr, 32 , 20722085.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., , and A. Dai, 2004: The spatial and temporal structure of ENSO nonlinearity. J. Climate, 17 , 30263036.

  • Monahan, A. H., , and K. L. Denman, 2004: Impacts of atmospheric variability on a coupled upper-ocean/ecosystem model of the subarctic Northeast Pacific. Global Biogeochem. Cycles, in press.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., 1999: Wind-induced variability of ocean gyres. Dyn. Atmos. Ocean, 29 , 335364.

  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for nonlocal stochastic–dynamic parameterisation in weather and climate prediction models. Quart. J. Roy. Meteor. Soc, 127 , 279304.

    • Search Google Scholar
    • Export Citation
  • Penland, C., 1996: A stochastic model of IndoPacific sea surface temperature anomalies. Physica D, 98 , 534558.

  • Penland, C., 2003a: Noise out of chaos and why it won't go away. Bull. Amer. Meteor. Soc, 84 , 921925.

  • Penland, C., 2003b: A stochastic approach to nonlinear dynamics: A review. Bull. Amer. Meteor. Soc, 84 , ES43ES52.

  • Ponte, R. M., , and R. D. Rosen, 2004: Nonlinear effects of variable winds on ocean stress climatologies. J. Climate, 17 , 12831293.

  • Rieder, K. F., 1997: Analysis of sea-surface drag parameterizations in open ocean conditions. Bound.-Layer Meteor, 82 , 355377.

  • Silverman, B. W., 1986: Density Estimation for Statistics and Data Analysis. Chapman and Hall, 175 pp.

  • Simmons, A., , and J. Gibson, 2000: The ERA-40 Project Plan. ERA-40 Project Report Series No. 1, ECMWF, Reading, United Kingdom, 63 pp.

  • Stull, R. B., 1997: An Introduction to Boundary Layer Meteorology. Kluwer, 670 pp.

  • Sura, P., 2003: Stochastic analysis of Southern and Pacific Ocean sea surface winds. J. Atmos. Sci, 60 , 654666.

  • Sura, P., , K. Fraedrich, , and F. Lunkheit, 2001: Regime transitions in a stochastically forced double-gyre model. J. Phys. Oceanogr, 31 , 411426.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. K., Ed.,. 2000: Intercomparison and validation of ocean– atmosphere energy flux fields. Joint WCRP/SCOR Working Group on Air–Sea Fluxes Final Report, WMO Tech. Doc. 1036, 306 pp.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. K., , and M. J. Yelland, 2001: The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr, 31 , 572590.

    • Search Google Scholar
    • Export Citation
  • Thompson, C., , and D. Battisti, 2000: A linear stochastic dynamical model of ENSO. Part I: Development. J. Climate, 13 , 28182832.

  • Ward, M. N., , and B. J. Hoskins, 1996: Near-surface wind over the global ocean 1949–1988. J. Climate, 9 , 18771895.

  • Wright, D. G., , and K. R. Thompson, 1983: Time-averaged forms of the nonlinear stress law. J. Phys. Oceanogr, 13 , 341345.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 100 100 78
PDF Downloads 19 19 3

A Simple Model for the Skewness of Global Sea Surface Winds

View More View Less
  • 1 School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, and Earth Systems Evolution Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A strong linear relationship between the mean and skewness of global sea surface winds (both zonal and meridional) is shown to exist, such that where the wind component is on average positive, it is negatively skewed (and vice versa). This relationship is observed in reanalysis, satellite, and buoy data. This relationship between the mean and skewness fields of sea surface winds follows from the nonlinear surface drag predicted for a turbulent boundary layer by Monin–Obukhov similarity theory since forcing perturbations speeding the wind up are subject to a stronger drag force than perturbations slowing it down. Furthermore, it is demonstrated that the results of an empirical fit of observed surface winds to a stochastic differential equation presented in a recent study by Sura are consistent with the white-noise limit of the momentum equations for a turbulent boundary layer subject to fluctuating forcing, albeit with a somewhat different physical interpretation.

Corresponding author address: Adam Hugh Monahan, School of Earth and Ocean Sciences, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8P 5C2, Canada. Email: monahana@uvic.ca

Abstract

A strong linear relationship between the mean and skewness of global sea surface winds (both zonal and meridional) is shown to exist, such that where the wind component is on average positive, it is negatively skewed (and vice versa). This relationship is observed in reanalysis, satellite, and buoy data. This relationship between the mean and skewness fields of sea surface winds follows from the nonlinear surface drag predicted for a turbulent boundary layer by Monin–Obukhov similarity theory since forcing perturbations speeding the wind up are subject to a stronger drag force than perturbations slowing it down. Furthermore, it is demonstrated that the results of an empirical fit of observed surface winds to a stochastic differential equation presented in a recent study by Sura are consistent with the white-noise limit of the momentum equations for a turbulent boundary layer subject to fluctuating forcing, albeit with a somewhat different physical interpretation.

Corresponding author address: Adam Hugh Monahan, School of Earth and Ocean Sciences, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8P 5C2, Canada. Email: monahana@uvic.ca

Save