• Alheit, R. R., , A. I. Flossmann, , and H. R. Pruppacher, 1990: A theoretical study of the wet removal of atmospheric pollutants. Part IV: The uptake and redistribution of aerosol particles through nucleation and impaction scavenging by growing cloud drops and ice particles. J. Atmos. Sci, 47 , 870887.

    • Search Google Scholar
    • Export Citation
  • Al-Naimi, R., , and C. P. R. Saunders, 1985: Measurements of natural deposition and condensation freezing ice nuclei in a continuous flow chamber. Atmos. Environ, 19 , 18711882.

    • Search Google Scholar
    • Export Citation
  • Bertram, A. K., , T. Koop, , L. T. Molina, , and M. J. Molina, 2000: Ice formation in (NH4)2SO4-H2O particles. J. Phys. Chem, 104A , 584588.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The formation of atmospheric ice crystals by the freezing of droplets. Quart. J. Roy. Meteor. Soc, 79 , 510519.

  • Bott, A., 1999: A numerical model of the cloud-topped planetary boundary layer: Chemistry in marine stratus and the effects on aerosol particles. Atmos. Environ, 33 , 19211936.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., 1990: An exploratory study of ice nucleation by soot aerosols. J. Appl. Meteor, 29 , 10721079.

  • DeMott, P. J., 2002: Laboratory studies of cirrus cloud processes. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 102–135.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., , M. P. Meyers, , and W. R. Cotton, 1994: Numerical model simulations of cirrus clouds including homogeneous and heterogeneous ice nucleation. J. Atmos. Sci, 51 , 7790.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., , D. C. Rogers, , and S. M. Kreidenweis, 1997: The susceptibility of ice formation in upper tropospheric clouds to insoluble aerosol components. J. Geophys. Res, 102 , 1957519584.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., , D. C. Rogers, , S. M. Kreidenweis, , and Y. Chen, 1998: The role of heterogeneous freezing nucleation in upper tropospheric clouds: Inferences from SUCCESS. Geophys. Res. Lett, 25 , 13871390.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., , and S. K. Mitra, 1998: A laboratory study of the effects of a kerosene burner exhaust on ice nucleation and the evaporation rate of ice crystals. Atmos. Environ, 32 , 31453151.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., , S. Matthias-Maser, , S. K. Mitra, , and R. Jaenicke, 2001: Wind tunnel studies of the ice nucleating ability of leaf litter and pollen in the immersion and contact mode. Proc. EGS XXVI General Assembly, Nice, France, European Geophysical Society, Geophysical Research Abstracts, Vol. 3, 5512.

    • Search Google Scholar
    • Export Citation
  • Diehl, K., , S. Matthias-Maser, , S. K. Mitra, , and R. Jaenicke, 2002: The ice nucleating ability of pollen. Part II: Laboratory studies in immersion and contact freezing modes. Atmos. Res, 61 , 125133.

    • Search Google Scholar
    • Export Citation
  • Eichel, C., , M. Krämer, , L. Schütz, , and S. Wurzler, 1996: The water-soluble fraction of atmospheric aerosol particles and its influence on cloud microphsics. J. Geophys. Res, 101 (D23) 29  49929510.

    • Search Google Scholar
    • Export Citation
  • Fukuta, N., 1958: Experimental investigations on the ice-forming ability of various chemical substances. J. Meteor, 15 , 1726.

  • Gerber, H. E., 1976: Relationship of size and activity for AgJ smoke particles. J. Atmos. Sci, 33 , 667677.

  • Gorbunov, B., , A. Baklanov, , N. Kakutkina, , H. L. Windsor, , and R. Toumi, 2001: Ice nucleation on soot particles. J. Aerosol Sci, 32 , 199215.

    • Search Google Scholar
    • Export Citation
  • Hagen, D. E., , R. J. Anderson, , and J. L. Kassner, 1981: Homogeneous condensation freezing nucleation rate measurements for small water droplets in an expansion cloud chamber. J. Atmos. Sci, 38 , 12361243.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and R. M. Sabin, 1989: Cirrus crystal nucleation by homogeneous freezing of solution droplets. J. Atmos. Sci, 46 , 22522264.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and L. M. Miloshovich, 1993: Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds. J. Atmos. Sci, 50 , 23352353.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., , S. Chang, , and J. D. Locatelli, 1974: The dimensions and aggregation of ice crystals in natural clouds. J. Geophys. Res, 79 , 21992206.

    • Search Google Scholar
    • Export Citation
  • Hoffer, T. E., 1961: A laboratory investigation of droplet freezing. J. Meteor, 18 , 766778.

  • Jaenicke, R., 1988: Aerosol physics and chemistry. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, G. Fischer, Ed., Vol. V4B, Springer Verlag, 391–457.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and Coauthors, 1998: Ice nucleating processes in upper tropospheric wave-clouds observed during SUCCESS. Geophys. Res. Lett, 25 , 13631366.

    • Search Google Scholar
    • Export Citation
  • Khain, A., , M. Ovtchinnikov, , M. Pinsky, , A. Pokrovsky, , and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res, 55 , 159224.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., , and J. A. Curry, 2000: A new theory of heterogeneous ice nucleation for application in cloud and climate models. Geophys. Res. Lett, 27 , 40814084.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , M. Murakami, , and Y. Sanuki, 1982: Preliminary measurements of the center nucleus of snow crystals using an energy dispersive X-ray microanalyzer. Mem. Natl. Inst. Polar Res, 24 , 157174.

    • Search Google Scholar
    • Export Citation
  • Koop, T., , A. K. Bertram, , L. T. Molina, , and M. J. Molina, 1999: Phase transitions in aqueous NH4HSO4 solutions. J. Phys. Chem, 103 , 90429048.

    • Search Google Scholar
    • Export Citation
  • Koop, T., , L. Beiping, , A. Tsias, , and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406 , 611614.

    • Search Google Scholar
    • Export Citation
  • Kumai, M., , and K. E. Francis, 1962: Nuclei in snow and ice crystals on the Greenland ice cap under natural and artificially simulated conditions. J. Atmos. Sci, 19 , 474481.

    • Search Google Scholar
    • Export Citation
  • Langham, E. J., , and B. J. Mason, 1958: The heterogeneous and homogeneous nucleation of supercooled water. Proc. Roy. Soc, A247 , 493505.

    • Search Google Scholar
    • Export Citation
  • Levin, Z., , and S. A. Yankofsky, 1983: Contact versus immersion freezing of freely suspended droplets by bacterial ice nuclei. J. Climate Appl. Meteor, 22 , 19641966.

    • Search Google Scholar
    • Export Citation
  • Levine, J., 1950: Statistical explanation of spontaneous freezing of water droplets. National Advisory Committee on Aeronautics Tech. Note 2234, 27 pp.

    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 1957: Physics of Clouds. Oxford University Press, 481 pp.

  • Meyers, M. P., , P. J. DeMott, , and W. R. Cotton, 1992: New primary ice nucleation parameterizations in an explicit cloud model. J. Appl. Meteor, 31 , 708721.

    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2003: Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA. Atmos. Chem. Phys, 3 , 211223.

    • Search Google Scholar
    • Export Citation
  • Mossop, S. C., , A. Ono, , and E. R. Wishart, 1970: Ice particles in maritime clouds near Tasmania. Quart. J. Roy. Meteor. Soc, 96 , 487508.

    • Search Google Scholar
    • Export Citation
  • Pitter, R. L., , and H. R. Pruppacher, 1973: A wind tunnel investigation of freezing of small water drops falling at terminal velocity in air. Quart. J. Roy. Meteor. Soc, 99 , 540550.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and M. Neiburger, 1963: The effect of water soluble substances on the supercooling of water drops. J. Atmos. Sci, 20 , 376385.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2d ed. Kluwer Academic, 348 pp.

  • Reisin, T., , and S. Wurzler, 2001: Implementation of a numerical solution of the multicomponent kinetic collection equation (MKCE) on parallel computers. J. Parallel Distr. Comput, 61 , 641661.

    • Search Google Scholar
    • Export Citation
  • Respondek, P. S., , A. I. Flossmann, , R. R. Alheit, , and H. R. Pruppacher, 1995: A theoretical study of the wet removal of atmospheric pollutants. Part V: The uptake, redistribution, and deposition of (NH4)2SO4 by a convective cloud containing ice. J. Atmos. Sci, 52 , 21212132.

    • Search Google Scholar
    • Export Citation
  • Roberts, P., , and J. Hallett, 1968: A laboratory study of the ice nucleating properties of some mineral particulates. Quart. J. Roy. Meteor. Soc, 94 , 2534.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , and G. C. Dodd, 1988: Homogeneous nucleation rate for highly supercooled cirrus cloud droplets. J. Atmos. Sci, 45 , 13571369.

    • Search Google Scholar
    • Export Citation
  • Schaller, R. C., , and N. Fukuta, 1979: Ice nucleation by aerosol particles: Experimental studies using a wedge-shaped ice thermal diffusion chamber. J. Atmos. Sci, 36 , 17881802.

    • Search Google Scholar
    • Export Citation
  • Schnell, R. C., , and G. Vali, 1976: Biogenic ice nuclei: Part I. Terrestrial and marine sources. J. Atmos. Sci, 33 , 15541564.

  • Svennigsson, I. B., , H. C. Hansson, , A. Wiedensohler, , K. J. Noone, , J. Ogren, , A. Hallberg, , and R. Colvile, 1994: Hygroscopic growth of aerosol particles and its influence on nucleation scavenging in clouds: Experimental results from Kleiner Feldberg. J. Atmos. Chem, 19 , 129152.

    • Search Google Scholar
    • Export Citation
  • Trautmann, T., , and C. Wanner, 1999: A fast and efficient modified sectional method for simulating multicomponent collisional kinetics. Atmos. Environ, 33 , 16311640.

    • Search Google Scholar
    • Export Citation
  • Vali, G., 1971: Quantitative evaluation of experimental results on the heterogeneous freezing nucleation of supercooled liquids. J. Atmos. Sci, 28 , 402409.

    • Search Google Scholar
    • Export Citation
  • Vali, G., 1985: Atmospheric ice nucleation—A review. J. Rech. Atmos, 19 , 105115.

  • Vali, G., 1994: Freezing rate due to heterogeneous nucleation. J. Atmos. Sci, 51 , 18431856.

  • Vali, G., , M. Christensen, , R. W. Fresh, , E. L. Galyan, , L. R. Maki, , and R. C. Schnell, 1976: Biogenic ice nuclei. Part II: Bacterial sources. J. Atmos. Sci, 33 , 15651570.

    • Search Google Scholar
    • Export Citation
  • Winkler, P., 1974: The relative composition of the atmospheric aerosol (in German). Meteor. Rundsch, 27 , 129136.

  • Wurzler, S., , and A. Bott, 2000: Numerical simulations of cloud microphysics and drop freezing as function drop contamination. J. Aerosol Sci, 31 , S152S153.

    • Search Google Scholar
    • Export Citation
  • Young, K. C., 1974: The role of contact nucleation in ice phase initiation in clouds. J. Atmos. Sci, 31 , 768775.

  • Zuberi, B., , A. K. Bertram, , C. A. Cassa, , L. T. Molina, , and M. J. Molina, 2002: Heterogeneous nucleation of ice in (NH4)2SO4 particles with mineral dust immersions. Geophys. Res. Lett, 29 .1504, doi:10.1029/2001GL014289.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 208 208 100
PDF Downloads 56 56 9

Heterogeneous Drop Freezing in the Immersion Mode: Model Calculations Considering Soluble and Insoluble Particles in the Drops

View More View Less
  • 1 Institute for Tropospheric Research, Leipzig, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A method is presented to consider the influence of both soluble and insoluble aerosol particles on drop freezing in the immersion mode in cloud models. Most atmospheric aerosol particles contain soluble and insoluble materials. Thus, a more realistic description of drop freezing should account for both factors. In general, salt particles depress the freezing point according to the salt concentration, while insoluble particles raise the freezing temperature. Based on laboratory experiments, a semiempirical equation was derived to calculate the median freezing temperature as a function of the drop size and for different insoluble particles. The freezing point depression was determined using the activity coefficients of the salt solutions. The results obtained with the freezing model for drops containing soluble and insoluble particles are consistent with experimental results. An equation for the freezing rate was derived and incorporated into an adiabatic air parcel model with detailed sectional microphysics. Model simulations were carried out to compare the present approach to the Bigg approach for drop freezing, which is often employed in cloud models. The results indicated that the Bigg equation describes drop freezing well in the immersion mode for a “mean” insoluble particle; however, the presented equations consider the significantly different freezing characteristics of various ice nuclei. Therefore, drop freezing in the immersion mode can be described for defined aerosol particle distributions as a function of the fractions of the different insoluble particles to the total aerosol particles.

Corresponding author address: K. Diehl, Institut für Troposphärenforschung, Permoserstraße 15, 04 318 Leipzig, Germany. Email: diehl@tropos.de

Abstract

A method is presented to consider the influence of both soluble and insoluble aerosol particles on drop freezing in the immersion mode in cloud models. Most atmospheric aerosol particles contain soluble and insoluble materials. Thus, a more realistic description of drop freezing should account for both factors. In general, salt particles depress the freezing point according to the salt concentration, while insoluble particles raise the freezing temperature. Based on laboratory experiments, a semiempirical equation was derived to calculate the median freezing temperature as a function of the drop size and for different insoluble particles. The freezing point depression was determined using the activity coefficients of the salt solutions. The results obtained with the freezing model for drops containing soluble and insoluble particles are consistent with experimental results. An equation for the freezing rate was derived and incorporated into an adiabatic air parcel model with detailed sectional microphysics. Model simulations were carried out to compare the present approach to the Bigg approach for drop freezing, which is often employed in cloud models. The results indicated that the Bigg equation describes drop freezing well in the immersion mode for a “mean” insoluble particle; however, the presented equations consider the significantly different freezing characteristics of various ice nuclei. Therefore, drop freezing in the immersion mode can be described for defined aerosol particle distributions as a function of the fractions of the different insoluble particles to the total aerosol particles.

Corresponding author address: K. Diehl, Institut für Troposphärenforschung, Permoserstraße 15, 04 318 Leipzig, Germany. Email: diehl@tropos.de

Save