• C.-Labonnote, L., , G. Brogniez, , M. Doutriaux-Boucher, , and J-C. Buriez, 2000: Modeling of light scattering in cirrus clouds with inhomogeneous hexagonal monocrystals. Comparison with in-situ and ADEOS-POLDER measurements. Geophys. Res. Lett, 27 , 113116.

    • Search Google Scholar
    • Export Citation
  • C.-Labonnote, L., , G. Brogniez, , J. C. Buriez, , M. Doutriaux-Boucher, , J. F. Gayet, , and A. Macke, 2001: Polarized light scattering by inhomogeneous hexagonal monocrystals: Validation with ADEOS-POLDER measurements. J. Geophys. Res, 106 , 1213912153.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., , G. Brogniez, , P. Goloub, , F. M. Breon, , and P. H. Flamant, 1999: Observations of horizontally oriented ice crystals in cirrus clouds with POLDER-1/ADEOS-1. J. Quant. Spectrosc. Radiat. Transfer, 63 , 521543.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., , P. Goloub, , J. Riedi, , J. D. Haan, , J. W. Hovenier, , and P. Flamant, 2001: Ice crystal shapes in cirrus clouds derived from POLDER/ ADEOS-1. J. Geophys. Res, 106 , 79557966.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., , P. Minnis, , D. Young, , L. Nguyen, , and R. F. Arduini, 2002: Estimation of cirrus clouds effective ice crystals shapes using visible reflectances from dual-satellite measurements. J. Geophys. Res.,107, 4730, doi:10.1029/2000JD000240.

    • Search Google Scholar
    • Export Citation
  • Deschamps, P. Y., , F. M. Breon, , M. Leroy, , A. Podaire, , A. Brickaud, , J. C. Buriez, , and G. Seze, 1994: The POLDER mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens, 32 , 598615.

    • Search Google Scholar
    • Export Citation
  • Goloub, P., , J. L. Deuzac, , M. Herman, , and Y. Fouquart, 1994: Analysis of the POLDER polarization measurements performed over cloud covers. IEEE Trans. Geosci. Remote Sens, 32 , 7888.

    • Search Google Scholar
    • Export Citation
  • Goloub, P., , N. Herman, , H. Chepfer, , P. Couvert, , G. Brogniez, , G. Seze, , and J. Riedi, 2001: Cloud phase detection from POLDER/ADEOS. J. Geophys. Res, 105 , 1474714759.

    • Search Google Scholar
    • Export Citation
  • Hagolle, O., and Coauthors, 1999: Results of POLDER in-flight calibration. IEEE Trans. Geosci. Remote Sens, 37 , 15501566.

  • Hendry, A., , and G. C. McCormick, 1976: Radar observations of the alignment of precipitation particles by electrostatic fields in thunderstorms. J. Geophys. Res, 81 , 53535357.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and C. M. R. Platt, 1984: A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content. J. Atmos. Sci, 41 , 846855.

    • Search Google Scholar
    • Export Citation
  • Jayaweera, K., , and B. J. Mason, 1965: The behavior of freely falling cylinders and cones in a viscous fluid. J. Fluid Mech, 22 , 709.

  • Klett, J. D., 1995: Orientation model for particles in turbulence. J. Atmos. Sci, 52 , 22762285.

  • Liou, K. N., , and Y. Takano, 2002: Interpretation of cirrus cloud polarization measurements from radiative transfer theory. Geophys. Res. Lett.,29, 1313, doi:10.1029/2001GL014613.

    • Search Google Scholar
    • Export Citation
  • List, R., , and R. S. Schemenauer, 1971: Free-fall behavior of planar snow crystals, conical graupel and small hail. J. Atmos. Sci, 28 , 110115.

    • Search Google Scholar
    • Export Citation
  • Lynch, D. K., , S. D. Gedzelman, , and A. B. Fraser, 1994: Subsuns, Bottlinger's rings, and elliptical halos. Appl. Opt, 33 , 45804589.

  • Magono, C., 1953: On the growth of snow flakes and graupel. Sci. Rep. Yokohama Natl. Univ., Ser. 1, 2 , 1840.

  • Masuda, K., , H. Ishimoto, , and T. Takashima, 2002: Retrieval of cirrus optical thickness and ice-shape information using total and polarized reflectance from satellite measurements. J. Quant. Spectrosc. Radiat. Transfer, 75 , 3951.

    • Search Google Scholar
    • Export Citation
  • Noel, V., , H. Chepfer, , G. Ledanois, , and P. H. Flamant, 2001: Computation of a single-scattering matrix for nonspherical particles randomly or horizontally oriented in space. Appl. Opt, 40 , 43654375.

    • Search Google Scholar
    • Export Citation
  • Noel, V., , G. Roy, , L. Bissonnette, , H. Chepfer, , and P. H. Flamant, 2002: Analysis of lidar measurements at multiple incidence angles. Geophys. Res. Lett.,29, 1338, doi:10.1029/2002GL014828.

    • Search Google Scholar
    • Export Citation
  • Ono, A., 1969: The shape and riming properties of ice crystals in natural clouds. J. Atmos. Sci, 26 , 138147.

  • Platt, C. M. R., , N. L. Abshire, , and G. T. McNice, 1978: Some microphysical properties of an ice cloud from lidar observations of horizontally oriented crystals. J. Appl. Meteor, 17 , 12201224.

    • Search Google Scholar
    • Export Citation
  • Podzimek, J., 1968: Aerodynamic conditions of ice crystal aggregation. Proc. Int. Conf. on Cloud Physics, Toronto, ON, Canada, Amer. Meteor. Soc., 295–299.

    • Search Google Scholar
    • Export Citation
  • Riedi, J., , M. Doutriaux-Boucher, , P. Goloub, , and P. Couvert, 2000: Global distribution of cloud top phase from POLDER/ADEOS I. Geophys. Res. Lett, 27 , 17071710.

    • Search Google Scholar
    • Export Citation
  • Riedi, J., , P. Goloub, , and R. T. Marchand, 2001: Comparison of POLDER cloud phase retrievals to active remote sensors measurements at the ARM SGP site. Geophys. Res. Lett, 28 , 21852188.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1980: Remote sensing of planar ice crystals fall attitude. J. Meteor. Soc. Japan, 58 , 422433.

  • Sassen, K., , and Y. Takano, 2000: Parry arc: A polarization lidar, ray-tracing, and aircraft case study. Appl. Opt, 39 , 67386475.

  • Sassen, K., , and S. Benson, 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical properties derived from lidar depolarization. J. Atmos. Sci, 58 , 21032111.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , K. N. Liou, , Y. Takano, , and V. I. Khvorostyanov, 2003: Diurnal effects in the composition of cirrus clouds. Geophys. Res. Lett.,30, 1539, doi:10.1029/2003GL017034.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , S-C. Tsay, , P. W. Stackhouse, , and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback. J. Atmos. Sci, 47 , 17421753.

    • Search Google Scholar
    • Export Citation
  • Takano, Y., , and K. N. Liou, 1989a: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci, 46 , 318.

    • Search Google Scholar
    • Export Citation
  • Takano, Y., , and K. N. Liou, 1989b: Solar radiative transfer in cirrus clouds. Part II: Theory and computation of multiple scattering in an anisotropic medium. J. Atmos. Sci, 46 , 2036.

    • Search Google Scholar
    • Export Citation
  • Thomas, L., , J. C. Cartwright, , and D. P. Wareing, 1990: Lidar observations of the horizontal orientation of ice crystals in cirrus clouds. Tellus, 42B , 211216.

    • Search Google Scholar
    • Export Citation
  • Trankle, E., , and R. G. Greenler, 1987: Multiple-scattering effects in halo phenomena. J. Opt. Soc. Amer, 4 , 591599.

  • Van de Hulst, H. C., 1957: Light Scattering by Small Particles. Dover, 470 pp.

  • Winker, D., , and B. Wielicki, 1999: The PICASSO-CENA mission. Proc. SPIE, 3870 , 2636.

  • Wylie, D. P., , W. P. Menzel, , H. M. Woolf, , and K. L. Strabala, 1994: Four years of global cirrus cloud statistics using HIRS. J. Climate, 7 , 19721986.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 151 151 106
PDF Downloads 51 51 9

Study of Ice Crystal Orientation in Cirrus Clouds Based on Satellite Polarized Radiance Measurements

View More View Less
  • 1 Analytical Services and Materials, Hampton, Virginia
  • | 2 Laboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau, France
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The goal of this paper is to retrieve information about ice particle orientation in cirrus clouds. This is achieved by comparing simulations of sunlight reflection on a cirrus cloud with measurements of polarized radiances from the spaceborne instrument Polarization and Directionality of the Earth's Reflectance (POLDER-1) on Advanced Earth Observing Satellite-1 (ADEOS-1). Results show that horizontal orientation of crystals can be spotted by the presence of a local maximum of polarized radiance in the direction of specular reflection. The angular width of the local maximum is shown to contain information on the particle maximum deviation angle, while the maximum intensity can provide information on particle shape and relative concentrations of ice crystals, horizontally and randomly oriented. The study of 31 ice cloud cases show that in 80% of them, the deviation angle is less than 3°. Also, the relative concentration of horizontally oriented crystals is less than 21%, depending on the angular distribution used for crystal deviation.

Corresponding author address: Vincent Noel, NASA Langley Research Center, Mail Stop 435, Hampton, VA 23681-2199. Email: v.r.noel@larc.nasa.gov

Abstract

The goal of this paper is to retrieve information about ice particle orientation in cirrus clouds. This is achieved by comparing simulations of sunlight reflection on a cirrus cloud with measurements of polarized radiances from the spaceborne instrument Polarization and Directionality of the Earth's Reflectance (POLDER-1) on Advanced Earth Observing Satellite-1 (ADEOS-1). Results show that horizontal orientation of crystals can be spotted by the presence of a local maximum of polarized radiance in the direction of specular reflection. The angular width of the local maximum is shown to contain information on the particle maximum deviation angle, while the maximum intensity can provide information on particle shape and relative concentrations of ice crystals, horizontally and randomly oriented. The study of 31 ice cloud cases show that in 80% of them, the deviation angle is less than 3°. Also, the relative concentration of horizontally oriented crystals is less than 21%, depending on the angular distribution used for crystal deviation.

Corresponding author address: Vincent Noel, NASA Langley Research Center, Mail Stop 435, Hampton, VA 23681-2199. Email: v.r.noel@larc.nasa.gov

Save