• Boudala, F. S., , G. A. Isaac, , S. G. Cober, , Q. Fu, , and A. V. Korolev, 2002a: Parameterization of liquid fraction in terms of temperature and cloud water content in stratiform mixed-phase clouds. Preprints, 11th Conf. on Cloud Physics, Ogden, UT, Amer. Meteor. Soc., CD-ROM, 2.5.

    • Search Google Scholar
    • Export Citation
  • Boudala, F. S., , G. A. Isaac, , Q. Fu, , and S. G. Cober, 2002b: Parameterization of effective ice particle size for high-latitude clouds. Int. J. Climatol, 22 , 12671284.

    • Search Google Scholar
    • Export Citation
  • Cloud Physics Research Division of MSC, 1999: FIRE-ACE: The Canadian Convair 580 Data Report. NASA Langley ASDC. [Available online at http://eosweb.larc.nasa.gov.].

    • Search Google Scholar
    • Export Citation
  • Cober, S. G., , G. A. Isaac, , A. V. Korolev, , and J. W. Strapp, 2001: Assessing cloud-phase conditions. J. Appl. Meteor, 40 , 19671983.

  • Curry, J. A., and Coauthors, 2000: FIRE Arctic clouds experiment. Bull. Amer. Meteor. Soc, 81 , 529.

  • Del Genio, A. D., 2002: GCM simulations of cirrus for climate studies. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 310–326.

    • Search Google Scholar
    • Export Citation
  • Fowler, L. D., , D. A. Randall, , and S. A. Rutledge, 1996: Liquid and ice cloud microphysics in the CSU general circulation model. Part I: Model description and simulated microphysical processes. J. Climate, 9 , 489529.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , S. K. Krueger, , and K. N. Liou, 1995: Interactions between radiation and convection in simulated tropical cloud clusters. J. Atmos. Sci, 52 , 13101328.

    • Search Google Scholar
    • Export Citation
  • Gierens, K., , U. Schumann, , M. Helten, , H. Smit, , and A. Marenco, 1999: A distribution law for relative humidity in the upper troposphere and lower stratosphere derived from three years of MOZAIC measurements. Ann. Geophys, 17 , 12181226.

    • Search Google Scholar
    • Export Citation
  • Hegg, D. A., , R. J. Ferek, , and P. V. Hobbs, 1995: Cloud condensation nuclei over the Arctic Ocean in early spring. J. Appl. Meteor, 34 , 20762082.

    • Search Google Scholar
    • Export Citation
  • Hegg, D. A., , P. V. Hobbs, , S. Gasso, , J. D. Nance, , and A. L. Rangno, 1996: Aerosol measurements in the Arctic relevant to direct and indirect radiative forcing. J. Geophys. Res, 101 , 2334923363.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., , and L. M. Miloshevich, 1995: Relative humidity and temperature influences on cirrus formation and evolution: Observations from wave clouds and FIRE-II. J. Atmos. Sci, 52 , 43024326.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., 2002: Ice clouds in numerical weather prediction models: Progress, problems, and prospects. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 327–345.

    • Search Google Scholar
    • Export Citation
  • Juisto, J. E., 1971: Crystal development and glaciation of a super-cooled cloud. J. Rech. Atmos, 5 , 6986.

  • Khvorostyanov, V. I., , and K. Sassen, 2002: Microphysical processes in cirrus and their impact on radiation: A mesoscale modeling perspective. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 397–432.

    • Search Google Scholar
    • Export Citation
  • Koop, T., , B. Luo, , A. Tsias, , and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406 , 611614.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , and G. A. Isaac, 2003: Phase transformation of mixed phase clouds. Quart. J. Roy. Meteor. Soc, 129 , 1938.

  • Korolev, A. V., , and I. P. Mazin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci, 60 , 29572974.

  • Korolev, A. V., , W. J. Strapp, , and G. A. Isaac, 1998: The Nevzorov airborne hot-wire LWC–TWC probe: Principle of operation and performance. J. Atmos. Oceanic Technol, 15 , 14951510.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , G. A. Isaac, , S. G. Cober, , J. W. Strapp, , and J. Hallett, 2003: Microphysical characterization of mixed-phase clouds. Quart. J. Roy. Meteor. Soc, 129 , 3965.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., , Q. Fu, , K. N. Liou, , and H. N. S. Chin, 1995: Improvement of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteor, 34 , 281287.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., , H. E. Willoughby, , and J. M. Piotrowicz, 1984: Role of a parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atmos. Sci, 41 , 28362848.

    • Search Google Scholar
    • Export Citation
  • Ovarlez, J., , J. F. Gayet, , K. Gierens, , J. Ström, , H. Ovarlez, , F. Auriol, , R. Busen, , and U. Schumann, 2002: Water vapor measurements inside cirrus clouds in northern and southern hemispheres during INCA. Geophys. Res. Lett.,29, 1813, doi: 10.1029/ 2001GL014440.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., , and C. A. Knight, 1984: Mixing and evolution of cloud droplet size spectra in vigorous continental cumulus. J. Atmos. Sci, 41 , 18011815.

    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., , and W. A. Cooper, 1988: Variability of the supersaturation in cumulus clouds. J. Atmos. Sci, 45 , 16511664.

  • Rogers, R. R., , and M. K. Yau, 1989: A Short Course in Cloud Physics. Pergamon Press, 293 pp.

  • Rotstayn, L. D., , B. F. Ryan, , and J. J. Katzfey, 2000: A scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large-scale models. Mon. Wea. Rev, 128 , 10701088.

    • Search Google Scholar
    • Export Citation
  • Squires, P., 1952: The growth of cloud drops by condensation. Aust. J. Sci. Res, 5 , 6686.

  • Strom, J., and Coauthors, 2003: Cirrus cloud occurrence as function of ambient relative humidity: A comparison of observations obtained during the INCA experiment. Atmos. Chem. Phys, 3 , 18071816.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., , J. Simpson, , and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev, 117 , 231235.

  • Tao, W. K., and Coauthors, 2003: Microphysics, radiation and surface processes in a non-hydrostatic model. Meteor. Atmos. Phys, 82 , 97137.

    • Search Google Scholar
    • Export Citation
  • Tremblay, A., , and A. Glazer, 2000: An improved modeling scheme for freezing precipitation forecasts. Mon. Wea. Rev, 128 , 12891308.

  • Uttal, T., and Coauthors, 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc, 83 , 255275.

  • Warner, J., 1968: The super-saturation in natural clouds. J. Rech. Atmos, 3 , 233237.

  • Wood, R., , and P. R. Field, 2000: Relationships between total water, condensed water, and cloud fraction in stratiform clouds examined using aircraft data. J. Atmos. Sci, 57 , 18881904.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 106 106 78
PDF Downloads 20 20 1

Testing Mixed-Phase Cloud Water Vapor Parameterizations with SHEBA/FIRE–ACE Observations

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The parameterization of in-cloud water vapor pressure below 0°C is examined using in situ aircraft observations from Canadian National Research Council (NRC) Convair-580 flights during the Surface Heat Budget of the Arctic Ocean (SHEBA)/First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment– Arctic Cloud Experiment (FIRE–ACE) campaign. The accuracy of in-cloud water vapor measurements is evaluated against the saturated water vapor pressure in liquid water clouds as derived from measured temperatures, which have a mean bias of about −1%. This study reveals that the parameterization used in the ECMWF cloud scheme, which employs a temperature-weighted average of the values with respect to ice and liquid water underestimates the saturated water vapor by ∼9% when applied to all in-cloud data from the campaign. It is found that a parameterization that relates the weighting to the cloud liquid and ice water contents agrees well with the observations. This study also reveals that it is incorrect to assume that water vapor is in equilibrium with liquid water in mixed-phase clouds.

Corresponding author address: Dr. Qiang Fu, Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195-1640. Email: qfu@atmos.washington.edu

Abstract

The parameterization of in-cloud water vapor pressure below 0°C is examined using in situ aircraft observations from Canadian National Research Council (NRC) Convair-580 flights during the Surface Heat Budget of the Arctic Ocean (SHEBA)/First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment– Arctic Cloud Experiment (FIRE–ACE) campaign. The accuracy of in-cloud water vapor measurements is evaluated against the saturated water vapor pressure in liquid water clouds as derived from measured temperatures, which have a mean bias of about −1%. This study reveals that the parameterization used in the ECMWF cloud scheme, which employs a temperature-weighted average of the values with respect to ice and liquid water underestimates the saturated water vapor by ∼9% when applied to all in-cloud data from the campaign. It is found that a parameterization that relates the weighting to the cloud liquid and ice water contents agrees well with the observations. This study also reveals that it is incorrect to assume that water vapor is in equilibrium with liquid water in mixed-phase clouds.

Corresponding author address: Dr. Qiang Fu, Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195-1640. Email: qfu@atmos.washington.edu

Save