Abstract
This paper investigates the occurrence of phase alignment of the tropical stratospheric quasi-biennial oscillation (QBO) with the annual cycle. First, updating previous studies, observational results are shown for NCEP reanalysis data and Singapore radiosondes: both datasets show strong phase alignment of the QBO at 24.5 km. Phase alignment is investigated in a 3D mechanistic stratospheric model including explicit large-scale planetary waves, forced by a lower boundary geopotential anomaly, and a simple equatorial wave parameterization. The model simulates a QBO-like oscillation, with the period depending on the lower boundary momentum flux of the parameterized waves. Phase alignment is manifested in two different ways. First, simulated oscillations of both integer and noninteger year periods are shown to lock on to a certain phase of the annual cycle. Second, when the magnitude of the lower boundary momentum flux is varied about a range implying oscillation period close to 2 yr, the period of the resulting oscillation is exactly 2 yr for a finite range of such magnitude. Analysis of the 3D model results suggest that the the phase alignment is due largely to the annual cycle in tropical upwelling. This hypothesis is supported by simulations with a 1D equatorial model including both parameterized waves and seasonally varying upwelling. The oscillations in this model show significant phase alignment when the upwelling parameters are tuned to correspond to the 3D model, although the phase alignment is weaker than that seen in the 3D model.
Corresponding author address: Peter Haynes, Dept. of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom. Email: P.H.Haynes@damtp.cam.ac.uk