Abstract
A theory is presented that addresses the connection between low-frequency wave packets (LFWPs) and the formation and decay of coherent structures (CSs) in large-scale atmospheric flow. Using a weakly nonlinear evolution equation as well as the nonlinear barotropic vorticity equation, the coalescence of LFWPs into CSs is shown to require packet configurations for which there is a convergent group velocity field. These LFWP configurations, which are consistent with observations, have shorter wave groups with faster group velocities upstream of longer wave groups with slower group velocities. These wave group configurations are explained by carrying out a kinematic analysis of wave focusing, whereby a collection of wave groups focus at some point in space and time to form a large amplitude wave packet having a single wave front. The wave focusing and the subsequent formation of CSs are enhanced by zonal variations in the background flow, while nonlinearity extends the lifetimes of the CSs. These results are discussed in light of observed blocking formation in the Atlantic–European and South Pacific regions.
Corresponding author address: Dr. Daniel Hodyss, RSMAS/MPO, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: danhodyss@yahoo.com