• Bergman, J. W., H. H. Hendon, and K. M. Weickmann, 2001: Intraseasonal air–sea interactions at the onset of El Niño. J. Climate, 14 , 17021719.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50 , 29222939.

  • Chang, C. P., and H. Lim, 1988: Kelvin wave–CISK: A possible mechanism for the 30–50 day oscillations. J. Atmos. Sci., 45 , 17091720.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., R. A. Houze, and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53 , 13801409.

    • Search Google Scholar
    • Export Citation
  • Cho, H-R., and D. Pendlebury, 1997: Wave CISK of equatorial waves and the vertical distribution of cumulus heating. J. Atmos. Sci., 54 , 24292440.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, and J. Wang, 2002: Impacts of humidity-corrected sonde data on TOGA COARE analyses. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meters. Soc., 190–192.

    • Search Google Scholar
    • Export Citation
  • Duchan, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18 , 10161022.

  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillation in the Tropics. J. Atmos. Sci., 44 , 23242340.

  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120 , 11111143.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and J. L. McBride, 1989: The vertical distribution of heating in AMEX and GATE cloud clusters. J. Atmos. Sci., 46 , 34643478.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., H. Wang, and J. L. McBride, 1996: Rawinsonde budget analyses during the TOGA COARE IOP. J. Atmos. Sci., 53 , 17611780.

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Halverson, J. B., B. S. Ferrier, T. M. Rickenbach, J. Simpson, and W-K. Tao, 1999: An ensemble of convective systems on 11 February 1993 during TOGA COARE: Morphology, rain characteristics, and anvil cloud interactions. Mon. Wea. Rev., 127 , 12081228.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1970: A theory of large-scale equatorial waves generated by condensation heat and accelerating the zonal wind. J. Meteor. Soc. Japan, 48 , 140160.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1971: Large-scale equatorial waves destabilized by convective heating in the presence of surface friction. J. Meteor. Soc. Japan, 49 , 458466.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., and D. G. Golder, 1986: Tropical intraseasonal oscillations appearing in a GFDL general circulation model and FGGE data. Part I: Phase propagation. J. Atmos. Sci., 43 , 30583067.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., and A. Sumi, 1986: The 30–40 day oscillation simulated in an “aqua planet” model. J. Meteor. Soc. Japan, 64 , 451466.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., and D. G. Golder, 1988: Tropical intraseasonal oscillations appearing in a GFDL general circulation model and FGGE data. Part II: Structure. J. Atmos. Sci., 45 , 30173033.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1990: A composite study of onset of the Australia monsoon. J. Atmos. Sci., 47 , 22272240.

  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51 , 22252237.

  • Higgins, R. W., and K. C. Mo, 1997: Persistent North Pacific circulation anomalies and the tropical intraseasonal oscillation. J. Climate, 10 , 223244.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., J-K. E. Schemm, W. Shi, and A. Leetmaa, 2000: Extreme precipitation events in the western United States related to tropical forcing. J. Climate, 13 , 793820.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1982: Cloud clusters and large-scale vertical motions in the Tropics. J. Meteor. Soc. Japan, 60 , 396410.

  • Houze, R. A., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115 , 425461.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78 , 21792196.

    • Search Google Scholar
    • Export Citation
  • Hsu, H-H., 1996: Global view of the intraseasonal oscillation during northern winter. J. Climate, 9 , 23862406.

  • Hu, Q., and D. A. Randall, 1994: Low-frequency oscillations in radiative–convective systems. J. Atmos. Sci., 51 , 10891099.

  • Johnson, R. H., 1984: Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implication for cumulus parameterization. Mon. Wea. Rev., 112 , 15901601.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., M. J. McPhaden, and K. M. Weickmann, 1995: Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J. Geophys. Res., 100 , 1061310631.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1992: Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev., 120 , 19001923.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and K. M. Weickmann, 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115 , 14071436.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T-N., P. K. Jayakumar, J. Sheng, N. Surgi, and A. Kuma, 1985: Divergent circulations on the 30 to 50 day time scale. J. Atmos. Sci., 42 , 364375.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The Status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39 , 19651982.

    • Search Google Scholar
    • Export Citation
  • Lang, S., W-K. Tao, J. Simpson, and B. Ferrier, 2003: Modeling of convective–stratiform precipitation processes: Sensitivity to partitioning methods. J. Appl. Meteor., 42 , 505527.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and P. H. Chan, 1985: Aspects of the 40–50 day oscillation during the northern winter as inferred from outgoing longwave radiation. Mon. Wea. Rev., 113 , 18891909.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and T. J. Phillips, 1986: Coherent fluctuations of extratropical geopotential height and tropical convection in intraseasonal timescales. J. Atmos. Sci., 43 , 11641181.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. J. Atmos. Sci., 44 , 950972.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., I. M. Held, and J. D. Neelin, 1988: The Madden–Julian oscillations in an idealized general circulation model. J. Atmos. Sci., 45 , 38103831.

    • Search Google Scholar
    • Export Citation
  • Lee, M-I., I-S. Kang, J-K. Kim, and B. E. Mapes, 2001: Influence of cloud–radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. J. Geophys. Res., 106 , 1421914233.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72 , 401411.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and R. H. Johnson, 1996: Heating, moistening, and rain over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53 , 33673383.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. E., 1974: Wave-CISK in the Tropics. J. Atmos. Sci., 31 , 156179.

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50 day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57 , 15151535.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze, 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121 , 13981415.

  • Mapes, B. E., and R. A. Houze, 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52 , 18071828.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1979: Large-scale aspects of deep convective activity over the GATE area. Mon. Wea. Rev., 107 , 9941013.

  • Murakami, T., and T. Nakazawa, 1985: Tropical 45 day oscillation during the 1979 Northern Hemisphere summer. J. Atmos. Sci., 42 , 11071122.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1986: Intraseasonal variations in the OLR in the Tropics during the FGGE year. J. Meteor. Soc. Japan, 64 , 1734.

  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44 , 23412348.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the Tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13 , 40874106.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., and J. J. Yienger, 1996: Observed long-term variability in the Hadley circulation and its connection to ENSO. J. Climate, 9 , 27512767.

    • Search Google Scholar
    • Export Citation
  • Park, C. K., D. M. Straus, and K-M. Lau, 1990: An evaluation of the structure of tropical intraseasonal oscillations in three general circulation models. J. Meteor. Soc. Japan, 68 , 403417.

    • Search Google Scholar
    • Export Citation
  • Qian, T., 2003: Cloud vertical structure and radiative heating profiles during TOGA COARE. Ph.D. thesis, State University of New York at Stony Brook, 141 pp. [Available from State University of New York at Stony Brook, Stony Brook, NY 11794.].

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58 , 28072819.

  • Rui, H., and B. Wang, 1990: Development characteristic and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47 , 357379.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and H. H. Hendon, 1994: Intraseasonal behavior of clouds, temperature, and motion in the Tropics. J. Atmos. Sci., 51 , 22072224.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., R. B. Garcia, and H. H. Hendon, 1994: Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51 , 23442367.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., 1993: The baroclinic problem and its application to the diagnosis of atmospheric heating rates. J. Atmos. Sci., 50 , 10991112.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., M. Newman, and C. R. Winkler, 1999: Dynamically consistent estimates of diabatic heating. Proc. 24th Climate Diagnostics and Prediction Workshop, Tucson, AZ, U.S. Department of Commerce, 172–175. [Available online at http://www.cdc.noaa.gov/map/chi/discussion.html.].

    • Search Google Scholar
    • Export Citation
  • Saxen, T. R., and S. A. Rutledge, 2000: Surface rainfall–cold cloud fractional coverage relationship in TOGA COARE: A function of vertical wind shear. Mon. Wea. Rev., 128 , 407415.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. H. Haze, 2003: Stratiform rain in the Tropics as seen by the TRMM precipitation radar. J. Climate, 16 , 17391756.

    • Search Google Scholar
    • Export Citation
  • Shie, C-L., W-K. Tao, J. Simpson, and C-H. Sui, 2003: Quasi-equilibrium states in the Tropics simulated by a cloud-resolving model. Part I: Specific features and budget analysis. J. Climate, 16 , 817833.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12 , 325357.

    • Search Google Scholar
    • Export Citation
  • Stocker, E., J. Kwiatkowski, and O. Kelley, 2001: Gridded hourly text products: A TRMM data reduction approach. Proc. IGARSS 2001, Sydney, Australia, IEEE, 658–660.

    • Search Google Scholar
    • Export Citation
  • Sui, C. H., and K-M. Lau, 1989: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part II: Structure and propagation of mobile wave-CISK modes and their modification by lower boundary forcings. J. Atmos. Sci., 46 , 3756.

    • Search Google Scholar
    • Export Citation
  • Takahashi, M., 1987: A theory of the slow phase speed of the intraseasonal oscillation using wave–CISK. J. Meteor. Soc. Japan, 65 , 4349.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., T. Iguchi, M. Kachi, A. Shibata, and H. Kanzawa, 1999: Abrupt termination of the 1997–98 El Niño in response to a Madden–Julian oscillation. Nature, 402 , 279282.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., J. Simpson, C-H. Sui, B. Ferrier, S. Lang, J. Scala, M-D. Chou, and K. Pickering, 1993: Heating, moisture, and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation. J. Atmos. Sci., 50 , 673690.

    • Search Google Scholar
    • Export Citation
  • Tao, W. K., and Coauthors, 2001: Retrieved vertical profiles of latent heat release using TRMM rainfall products for February 1998. J. Appl. Meteor., 40 , 957982.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. M., S. W. Payne, E. E. Recker, and R. J. Reed, 1979: Structure and properties of synoptic-scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. J. Atmos. Sci., 36 , 5372.

    • Search Google Scholar
    • Export Citation
  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30–60-day oscillation and the Arakawa–Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66 , 883901.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990a: Synoptic climatology of transient tropical intraseasonal convection anomalies. Meteor. Atmos. Phys., 44 , 4361.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990b: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci., 47 , 398413.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and M. E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the 11-layer UIUC atmospheric GCM. J. Climate, 12 , 14231457.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K., 1983: Intraseasonal circulation and outgoing longwave radiation modes during northern winter. Mon. Wea. Rev., 111 , 18381858.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250-mb streamfunction during northern winter. Mon. Wea. Rev., 113 , 941961.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Winkler, C. R., M. Newman, and P. D. Sardeshmukh, 2001: A linear model of wintertime low-frequency variability. Part I: Formulation and forecast skill. J. Climate, 14 , 44744494.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2000: The relationship between convection and sea surface temperature on intraseasonal timescales. J. Climate, 13 , 20862104.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Yamasaki, M., 1968a: A tropical cyclone model with parameterized partition of released latent heat. J. Meteor. Soc. Japan, 46 , 202214.

    • Search Google Scholar
    • Export Citation
  • Yamasaki, M., 1968b: Detailed analysis of a tropical cyclone simulated with a 13-layer model. Pap. Meteor. Geophys., 19 , 559585.

  • Yamasaki, M., 1969: Large-scale disturbances in a conditionally unstable atmosphere in low latitudes. Pap. Meteor. Geophys., 20 , 289336.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., B. Chen, and W-W. Tung, 2000: The Madden–Julian oscillation observed during the TOGA COARE IOP: Global view. J. Atmos. Sci., 57 , 23742396.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57 , 227242.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1996: Atmospheric intraseasonal variability at the surface in the tropical western Pacific Ocean. J. Atmos. Sci., 53 , 739758.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and M. A. Geller, 1994: Selective excitation of tropical atmospheric waves in wave-CISK: The effect of vertical wind shear. J. Atmos. Sci., 51 , 353368.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and J. L. Lin, 1997: Constrained variational analysis of sounding data based on column-integrated budgets of mass, heat, moisture, and momentum: Approach and application to ARM measurements. J. Atmos. Sci., 54 , 15031524.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and J. L. Lin, 1999: Synthesizing TOGA COARE measurements in the atmosphere, at the surface, and at TOA. Proc. Conf. on the TOGA Coupled Ocean–Atmosphere Response Experiment (COARE), Boulder, CO, National Institute of Standards and Technology, WMO Tech. Doc. WMO/TD 940, 309–310.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 460 173 21
PDF Downloads 283 131 12

Stratiform Precipitation, Vertical Heating Profiles, and the Madden–Julian Oscillation

View More View Less
  • 1 NOAA–CIRES Climate Diagnostics Center, Boulder, Colorado, and State University of New York at Stony Brook, Stony Brook, New York
  • | 2 NOAA–CIRES Climate Diagnostics Center, Boulder, Colorado
  • | 3 State University of New York at Stony Brook, Stony Brook, New York
  • | 4 NOAA–CIRES Climate Diagnostics Center, Boulder, Colorado
Restricted access

Abstract

The observed profile of heating through the troposphere in the Madden–Julian oscillation (MJO) is found to be very top heavy: more so than seasonal-mean heating and systematically more so than all of the seven models for which intraseasonal heating anomaly profiles have been published. Consistently, the Tropical Rainfall Measuring Mission (TRMM) precipitation radar shows that stratiform precipitation (known to heat the upper troposphere and cool the lower troposphere) contributes more to intraseasonal rainfall variations than it does to seasonal-mean rainfall. Stratiform rainfall anomalies lag convective rainfall anomalies by a few days. Reasons for this lag apparently include increased wind shear and middle–upper tropospheric humidity, which also lag convective (and total) rainfall by a few days.

A distinct rearward tilt is seen in anomalous heating time–height sections, in both the strong December 1992 MJO event observed by the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) and a composite MJO constructed from multiyear datasets. Interpretation is aided by a formal partitioning of the COARE heating section into convective, stratiform, and radiative components. The tilted structure after the maximum surface rainfall appears to be largely contributed by latent and radiative heating in enhanced stratiform anvils. However, the tilt of anomalous heating ahead of maximum rainfall is seen within the convective component, suggesting a change from shallower to deeper convective heating as the wet phase of the MJO approached the longitude of the observations.

Corresponding author address: Dr. Jialin Lin, NOAA–CIRES Climate Diagnostics Center R/CD, 325 Broadway, Boulder, CO 80305-3328. Email: Jialin.Lin@noaa.gov

Abstract

The observed profile of heating through the troposphere in the Madden–Julian oscillation (MJO) is found to be very top heavy: more so than seasonal-mean heating and systematically more so than all of the seven models for which intraseasonal heating anomaly profiles have been published. Consistently, the Tropical Rainfall Measuring Mission (TRMM) precipitation radar shows that stratiform precipitation (known to heat the upper troposphere and cool the lower troposphere) contributes more to intraseasonal rainfall variations than it does to seasonal-mean rainfall. Stratiform rainfall anomalies lag convective rainfall anomalies by a few days. Reasons for this lag apparently include increased wind shear and middle–upper tropospheric humidity, which also lag convective (and total) rainfall by a few days.

A distinct rearward tilt is seen in anomalous heating time–height sections, in both the strong December 1992 MJO event observed by the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) and a composite MJO constructed from multiyear datasets. Interpretation is aided by a formal partitioning of the COARE heating section into convective, stratiform, and radiative components. The tilted structure after the maximum surface rainfall appears to be largely contributed by latent and radiative heating in enhanced stratiform anvils. However, the tilt of anomalous heating ahead of maximum rainfall is seen within the convective component, suggesting a change from shallower to deeper convective heating as the wet phase of the MJO approached the longitude of the observations.

Corresponding author address: Dr. Jialin Lin, NOAA–CIRES Climate Diagnostics Center R/CD, 325 Broadway, Boulder, CO 80305-3328. Email: Jialin.Lin@noaa.gov

Save