• Alexander, M. J., and J. Holton, 1997: A model study of zonal forcing in the equatorial stratosphere by convectively induced gravity waves. J. Atmos. Sci., 54 , 408419.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and R. A. Vincent, 2000: Gravity waves in the tropical lower stratosphere: A model study of seasonal and interannual variability. J. Geophys. Res., 105 , 1798317993.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., R. A. Vincent, and D. R. Durran, 1995: The gravity wave response above deep convection in a squall line simulation. J. Atmos. Sci., 52 , 22122226.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., M. J. Alexander, and J. R. Holton, 2002: Effects of tropospheric wind shear on the spectrum of convectively generated gravity waves. J. Atmos. Sci., 59 , 18051824.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and R. A. Houze Jr., 1996: The heat budget of a midlatitude squall line and implications for potential vorticity production. J. Atmos. Sci., 53 , 12171240.

    • Search Google Scholar
    • Export Citation
  • Chong, M., and D. Hauser, 1990: A tropical squall line observed during the COPT 81 experiment in west africa. Part III: Heat and moisture budgets. Mon. Wea. Rev., 118 , 16961706.

    • Search Google Scholar
    • Export Citation
  • Chun, H. Y., and J. J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55 , 32993310.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., T. Hauf, and J. P. Kuettner, 1986: Convectively forced internal gravity waves: Results from two-dimensional numerical experiments. Quart. J. Roy. Meteor. Soc., 112 , 899925.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102 , 2605326076.

  • Durran, D. R., 1999: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer-Verlag, 465 pp.

  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111 , 23412361.

    • Search Google Scholar
    • Export Citation
  • Fovell, R., D. Durran, and J. R. Holton, 1992: Numerical simulations of convectively generated stratospheric waves. J. Atmos. Sci., 49 , 14271442.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., J. H. Beres, and X. Zhou, 2002: On the vertical scale of gravity waves excited by localized thermal forcing. J. Atmos. Sci., 59 , 20192023.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and T. L. Clark, 2002: Gravity waves generated by the dry convective boundary layer: Two-dimensional scale selection and boundary-layer feedback. Quart. J. Roy. Meteor. Soc., 128 , 15431570.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., M. J. Reeder, and T. L. Clark, 2001: Numerical modeling of gravity wave generation by deep tropical convection. J. Atmos. Sci., 58 , 12491274.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and J. R. Holton, 1968: A theory of the quasi-biennial oscillation. J. Atmos. Sci., 25 , 10951107.

  • Pandya, R. E., and M. J. Alexander, 1999: Linear stratospheric gravity waves above convective thermal forcing. J. Atmos. Sci., 56 , 24342446.

    • Search Google Scholar
    • Export Citation
  • Piani, C., D. Durran, M. J. Alexander, and J. R. Holton, 2000: A numerical study of three-dimensional gravity waves triggered by deep tropical convection and their role in the dynamics of the QBO. J. Atmos. Sci., 57 , 36893702.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and R. R. Garcia, 1987: Transient response to localized episodic heating in the Tropics. Part I: Excitation and short-time near-field behavior. J. Atmos. Sci., 44 , 458498.

    • Search Google Scholar
    • Export Citation
  • Song, I-S., H-Y. Chun, and T. P. Lane, 2003: Generation mechanisms of convectively forced internal gravity waves and their propagation to the stratosphere. J. Atmos. Sci., 60 , 19601980.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 421 150 11
PDF Downloads 237 114 8

A Method of Specifying the Gravity Wave Spectrum above Convection Based on Latent Heating Properties and Background Wind

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
  • | 2 Colorado Research Associates, Boulder, Colorado
  • | 3 University of Washington, Seattle, Washington
Restricted access

Abstract

The spectrum of convectively generated gravity waves is currently not resolved in general circulation models and must be parameterized. Due to the lack of understanding of the connection between convection properties and gravity waves, such parameterizations assume a source spectrum of gravity waves that is not linked to the forcing region. This paper introduces a method of specifying the gravity wave spectrum above convection based on the latent heating properties and background wind in the convective region that can be implemented in general circulation models. This method is based on linear calculations of momentum flux generated by a multifrequency thermal forcing and incorporates the effects of tropospheric mean wind in the convective environment. In the analysis, gravity waves that are generated by both the steady and the oscillatory component of the heating are included. It is shown that an accurate spectrum of convectively generated gravity waves can be deduced from the knowledge of approximate horizontal and vertical scales of the latent heating region, the heating rate, and tropospheric wind profile.

Corresponding author address: Jadwiga H. Beres, NCAR/ASP, P.O. Box 3000, Boulder, CO 80307. Email: beres@ucar.edu

Abstract

The spectrum of convectively generated gravity waves is currently not resolved in general circulation models and must be parameterized. Due to the lack of understanding of the connection between convection properties and gravity waves, such parameterizations assume a source spectrum of gravity waves that is not linked to the forcing region. This paper introduces a method of specifying the gravity wave spectrum above convection based on the latent heating properties and background wind in the convective region that can be implemented in general circulation models. This method is based on linear calculations of momentum flux generated by a multifrequency thermal forcing and incorporates the effects of tropospheric mean wind in the convective environment. In the analysis, gravity waves that are generated by both the steady and the oscillatory component of the heating are included. It is shown that an accurate spectrum of convectively generated gravity waves can be deduced from the knowledge of approximate horizontal and vertical scales of the latent heating region, the heating rate, and tropospheric wind profile.

Corresponding author address: Jadwiga H. Beres, NCAR/ASP, P.O. Box 3000, Boulder, CO 80307. Email: beres@ucar.edu

Save