PBL Stratiform Cloud Inhomogeneities Thermally Induced by the Orography: A Parameterization for Climate Models

Rafael Terra Department of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Rafael Terra in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper proposes a parameterization for use in climate models of the orographic variance and associated thermal circulation's impact on the macroscopic behavior of planetary boundary layer (PBL) stratiform clouds. Orographically induced inhomogeneities in the PBL cloud field can significantly alter the area-averaged cloud-radiative properties and consequently the PBL evolution. Current climate models do not include this effect.

The design of the parameterization is based on a systematic set of experiments in which a cloud system resolving model (CSRM) explicitly simulates the diurnally varying interactions between PBL clouds and the orography for a variety of configurations. Analyses of the results suggest that the orographic effect on PBL clouds is parameterizable to a large extent due to a quasi equilibrium between cloud-radiative, turbulent, and mesoscale processes. Parameterizability holds in the range of parameters for which stratiform clouds play a dominant role in the PBL dynamics (cloud fraction ∼0.5 or larger). A statistical parameterization of the liquid water path (LWP) spatial distribution in the PBL is formulated as a function of its mean state. The component of the LWP distribution not captured by the parameterization is mostly associated with a hysteresis effect in the PBL height and decreases with increasing orographic variance. The LWP distribution is characterized by an exponentially decaying function that describes the patchy clouds and a bell-shaped function that describes the solid cloud decks. Orographic variance impacts cloud fraction and the relative area cover of the patchy and solid clouds, mainly by reducing the incidence of the latter, while the characteristic horizontal scale of the orography has little influence on PBL cloudiness.

Current affiliation: Instituto de Mecánica de los Fluidos e Ingeniería Ambiental, Universidad de la República, Montevideo, Uruguay

Corresponding author address: Rafael Terra, Facultad de Ingeniería, IMFIA, Julio Herrera y Reissig 565, Montevideo 11300, Uruguay. Email: rterra@fing.edu.uy

Abstract

This paper proposes a parameterization for use in climate models of the orographic variance and associated thermal circulation's impact on the macroscopic behavior of planetary boundary layer (PBL) stratiform clouds. Orographically induced inhomogeneities in the PBL cloud field can significantly alter the area-averaged cloud-radiative properties and consequently the PBL evolution. Current climate models do not include this effect.

The design of the parameterization is based on a systematic set of experiments in which a cloud system resolving model (CSRM) explicitly simulates the diurnally varying interactions between PBL clouds and the orography for a variety of configurations. Analyses of the results suggest that the orographic effect on PBL clouds is parameterizable to a large extent due to a quasi equilibrium between cloud-radiative, turbulent, and mesoscale processes. Parameterizability holds in the range of parameters for which stratiform clouds play a dominant role in the PBL dynamics (cloud fraction ∼0.5 or larger). A statistical parameterization of the liquid water path (LWP) spatial distribution in the PBL is formulated as a function of its mean state. The component of the LWP distribution not captured by the parameterization is mostly associated with a hysteresis effect in the PBL height and decreases with increasing orographic variance. The LWP distribution is characterized by an exponentially decaying function that describes the patchy clouds and a bell-shaped function that describes the solid cloud decks. Orographic variance impacts cloud fraction and the relative area cover of the patchy and solid clouds, mainly by reducing the incidence of the latter, while the characteristic horizontal scale of the orography has little influence on PBL cloudiness.

Current affiliation: Instituto de Mecánica de los Fluidos e Ingeniería Ambiental, Universidad de la República, Montevideo, Uruguay

Corresponding author address: Rafael Terra, Facultad de Ingeniería, IMFIA, Julio Herrera y Reissig 565, Montevideo 11300, Uruguay. Email: rterra@fing.edu.uy

Save
  • André, J-C., G. de Moor, P. Lacarrère, and R. du Vachat, 1978: Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer. J. Atmos. Sci., 35 , 18611883.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 1966: Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow, Part I. J. Comput. Phys., 1 , 119143.

    • Search Google Scholar
    • Export Citation
  • Arola, A., 1999: Parameterization of turbulent and mesoscale fluxes for heterogeneous surfaces. J. Atmos. Sci., 56 , 584598.

  • Avissar, R., and F. Chen, 1993: Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (subgrid scale) fluxes for large-scale atmospheric models. J. Atmos. Sci., 50 , 37513774.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., and T. Schmidt, 1998: An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J. Atmos. Sci., 55 , 26662689.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., B. A. Wielicki, and L. Parker, 1996: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part II: Validation using satellite data. J. Atmos. Sci., 53 , 23042316.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., and P. Siebesma, 1998: Organization and representation of boundary layer clouds. J. Atmos. Sci., 55 , 888895.

  • Bechtold, P., S. K. Krueger, W. S. Lewellen, E. van Meijgaard, C-H. Moeng, D. A. Randall, A. van Ulden, and S. Wang, 1996: Modeling of stratocumulus-topped PBL: Intercomparison among different one-dimensional code and with large eddy simulations. Bull. Amer. Meteor. Soc., 77 , 20332042.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and K. A. Emanuel, 2001: A parameterization of the cloudiness associated with cumulus convection; Evaluation using TOGA COARE data. J. Atmos. Sci., 58 , 31583183.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., 1981: Modeling the trade-wind cumulus boundary layer. Part I: Testing the ensemble cloud relations against numerical data. J. Atmos. Sci., 38 , 10091020.

    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell, and J. B. Snider, 1994: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51 , 24342455.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and R. Avissar, 1994: Impact of land-surface moisture variability on local shallow convective cumulus and precipitation in large-scale models. J. Appl. Meteor., 33 , 13821401.

    • Search Google Scholar
    • Export Citation
  • Considine, G., J. A. Curry, and B. Wielicki, 1997: Modeling cloud fraction and horizontal variability in marine boundary layer clouds. J. Geophys. Res., 102 , 1351713525.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press, 883 pp.

  • Cusack, S., J. M. Edwards, and R. Kershaw, 1999: Estimating the subgrid variance of saturation, and its parameterization for use in a GCM cloud scheme. Quart. J. Roy. Meteor. Soc., 125 , 30573076.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., M. S. Yao, W. Kovari, and K. K-W. Lo, 1996: A prognostic cloud water parameterization for global climate models. J. Climate, 9 , 270304.

    • Search Google Scholar
    • Export Citation
  • Ek, M., and L. Mahrt, 1991: A formulation for boundary layer cloud cover. Ann. Geophys., 9 , 716724.

  • Fu, Q., and K-N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49 , 21392156.

    • Search Google Scholar
    • Export Citation
  • Golaz, J-C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59 , 35403551.

    • Search Google Scholar
    • Export Citation
  • Golding, B. W., 1993: A study of the influence of terrain on fog development. Mon. Wea. Rev., 121 , 25292541.

  • Gopalakrishnan, S. G., S. Baidya Roy, and R. Avissar, 2000: An evaluation of the scale at which topographical features affect the convective boundary layer using large eddy simulations. J. Atmos. Sci., 57 , 334351.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., 1998: Sensitivity of the simulated climate to a diagnostic formulation for cloud liquid water. J. Climate, 11 , 14971515.

    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7 , 465497.

    • Search Google Scholar
    • Export Citation
  • Hindman II, E. E., 1973: Air current in a mountain valley deduced from the breakup of a stratus deck. Mon. Wea. Rev., 101 , 195200.

  • Kim, Y-J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52 , 18751902.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6 , 15871606.

  • Krueger, S. K., 1985: Numerical simulation of tropical cumulus clouds and their interaction with the subcloud layer. Ph.D. thesis, Department of Atmospheric Sciences, University of California, Los Angeles, 205 pp.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., 1988: Numerical simulation of tropical cumulus clouds and their interaction with the subcloud layer. J. Atmos. Sci., 45 , 22212250.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., R. Wood, P. R. Field, J-C. Golaz, T. H. Vonder Haar, and W. R. Cotton, 2001: Small-scale and mesoscale variability of scalars in cloudy boundary layers: One-dimensional probability density functions. J. Atmos. Sci., 58 , 19781994.

    • Search Google Scholar
    • Export Citation
  • Le Treut, H., and Z-X. Li, 1991: Sensitivity of an atmospheric circulation model to prescribed SST changes: Feedback effects associated with the simulation of cloud optical properties. Climate Dyn., 5 , 175187.

    • Search Google Scholar
    • Export Citation
  • Liou, K-N., Q. Fu, and T. P. Ackerman, 1988: A simple formulation of the delta-four-stream approximation for radiative transfer parameterizations. J. Atmos. Sci., 45 , 19401947.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., C. P. Weaver, and R. Avissar, 1999: Toward a parameterization of mesoscale fluxes and moist convection induced by landscape heterogeneity. J. Geophys. Res., 104 , 1951519533.

    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., F. Abramopoulos, and R. Avissar, 1995: Using similarity theory to parameterize mesoscale heat fluxes generated by subgrid-scale landscape discontinuities in GCMs. J. Climate, 8 , 932951.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 1977: The Gaussian cloud model relations. J. Atmos. Sci., 34 , 17961816.

  • Nishizawa, K., 2000: Parameterization of nonconvective condensation for low-resolution climate models: Comparison of diagnostic schemes for fractional cloud cover and cloud water content. J. Meteor. Soc. Japan, 78 , 111.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., X. Zeng, T. J. Lee, and G. A. Dalu, 1997: Mesoscale fluxes over heterogeneous flat landscapes for use in larger scale models. J. Hydrol., 190 , 317336.

    • Search Google Scholar
    • Export Citation
  • Pihos, G. G., and M. G. Wurtele, 1981: An efficient code for the simulation of non-hydrostatic stratified flow over obstacles. NASA Tech. Rep. CR-3385, 126 pp. [NTIS N8123762].

    • Search Google Scholar
    • Export Citation
  • Piliè, R. G., E. J. Mack, W. C. Kocmond, C. W. Rogers, and W. J. Eadie, 1975: The life cycle of valley fog. Part I: Micrometeorological characteristics. J. Appl. Meteor., 14 , 347363.

    • Search Google Scholar
    • Export Citation
  • Price, J. D., 1999: Observations of stratocumulus cloud break-up over land. Quart. J. Roy. Meteor. Soc., 125 , 441468.

  • Price, J. D., 2001: A study of probability distributions of boundary-layer humidity and associated errors in parameterized cloud-fraction. Quart. J. Roy. Meteor. Soc., 127 , 739758.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and M. J. Suarez, 1984: On the dynamics of stratocumulus formation and dissipation. J. Atmos. Sci., 41 , 30523057.

  • Ricard, J. L., and J. F. Royer, 1993: A statistical cloud scheme for use in AGCM. Ann. Geophys., 11 , 10951115.

  • Slingo, J. M., 1980: A cloud parameterization scheme derived from GATE data for use with a numerical model. Quart. J. Roy. Meteor. Soc., 106 , 747770.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113 , 899927.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1960: On the dynamical prediction of large-scale condensation by numerical models. Physics of Precipitation, Geophys. Monogr., No. 5, Amer. Geophys. Union, 71–78.

    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116 , 435460.

    • Search Google Scholar
    • Export Citation
  • Sommeria, G., and J. W. Deardorff, 1977: Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci., 34 , 344355.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1978: Radiation profiles in extended water clouds. Part II: Parameterization schemes. J. Atmos. Sci., 35 , 21232132.

  • Stevens, D. E., A. S. Ackerman, and C. S. Bretherton, 2002: Effects of domain size and numerical resolution on the simulation of shallow cumulus convection. J. Atmos. Sci., 59 , 32853301.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., A. Arakawa, and D. A. Randall, 1983: The parameterization of the planetary boundary layer in the UCLA general circulation model: Formulation and results. Mon. Wea. Rev., 111 , 22242243.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1978: A parameterization scheme for non-convective condensation, including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104 , 677690.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1988: Parameterization of condensation and associated clouds in models for weather prediction and general circulation simulation. Physically Based Modeling and Simulation of Climate and Climatic Change, M. E. Schlesinger, Ed., Vol. 1, Kluwer Academic Publishers, 433–461.

    • Search Google Scholar
    • Export Citation
  • Takacs, L. L., 1985: A two-step scheme for the advection equation with minimized dissipation and dispersion errors. Mon. Wea. Rev., 113 , 10501065.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., 2001: Cloud fraction and relative humidity in a prognostic cloud fraction scheme. Mon. Wea. Rev., 129 , 17501753.

  • Terra, R., C. R. Mechoso, and A. Arakawa, 2004: Impact of orographically induced spatial variability in PBL stratiform clouds on climate simulations. J. Climate, 17 , 276293.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121 , 30403061.

  • Tjernström, M., 1987: A study of flow over complex terrain using a three dimensional model—A preliminary model evaluation focusing on fog and stratus. Ann. Geophys., 5B , 469486.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., 1988: Numerical simulations of stratiform boundary-layer clouds on the meso-γ-scale. Part I: The influence of terrain height differences. Bound.-Layer Meteor., 44 , 3372.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59 , 19171942.

    • Search Google Scholar
    • Export Citation
  • Wang, J. F., R. L. Bras, and E. A. B. Elthair, 1996: A stochastic linear-theory of mesoscale circulation induced by the thermal heterogeneity of the land surface. J. Atmos. Sci., 53 , 33493366.

    • Search Google Scholar
    • Export Citation
  • Wang, S., 1996: Defining marine boundary layer clouds with a prognostic scheme. Mon. Wea. Rev., 124 , 18171833.

  • Whiteman, C. D., 1990: Observations of thermally developed wind systems in mountainous terrain. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 23, Amer. Meteor. Soc., 5–42.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and P. R. Field, 2000: Relationships between total water, condensed water, and cloud fraction in stratiform clouds examined using aircraft data. J. Atmos. Sci., 57 , 18881905.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and D. A. Randall, 1996a: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53 , 30843102.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and D. A. Randall, 1996b: Evaluation of statistically based cloudiness parameterizations used in climate models. J. Atmos. Sci., 53 , 31033119.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., and R. A. Pielke, 1993: Error-growth dynamics and predictability of surface thermally induced atmospheric flow. J. Atmos. Sci., 50 , 28172844.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., and R. A. Pielke, 1995a: Further study on the predictability of landscape-induced atmospheric flow. J. Atmos. Sci., 52 , 16801698.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., and R. A. Pielke, 1995b: Landscape-induced atmospheric flow and its parameterization in large-scale numerical models. J. Climate, 8 , 11561177.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 233 18 0
PDF Downloads 45 5 0