The Structure of the Near-Neutral Atmospheric Surface Layer

Philippe Drobinski Institut Pierre Simon Laplace/Service d'Aéronomie, Paris, France

Search for other papers by Philippe Drobinski in
Current site
Google Scholar
PubMed
Close
,
Pierre Carlotti Centre d'Études des Tunnels, Bron, France

Search for other papers by Pierre Carlotti in
Current site
Google Scholar
PubMed
Close
,
Rob K. Newsom NOAA/Environmental Technology Laboratory, Boulder, Colorado
Cooperative Institute for Research in the Atmosphere, Fort Collins, Colorado

Search for other papers by Rob K. Newsom in
Current site
Google Scholar
PubMed
Close
,
Robert M. Banta NOAA/Environmental Technology Laboratory, Boulder, Colorado

Search for other papers by Robert M. Banta in
Current site
Google Scholar
PubMed
Close
,
Ralph C. Foster Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Ralph C. Foster in
Current site
Google Scholar
PubMed
Close
, and
Jean-Luc Redelsperger Centre National de Recherches Météorologiques, Météo-France, Toulouse, France

Search for other papers by Jean-Luc Redelsperger in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent observational data (turbulence variables by sonic anemometers and three-dimensional flow pattern by Doppler lidar), obtained during the Cooperative Atmosphere Surface Exchange Study field campaign in October 1999 (CASES-99), show evidence of a layered structure of the near-neutral surface layer: (i) the eddy surface layer (ESL), which is the lower sublayer where blocking of impinging eddies is the dominating mechanism; and (ii) the shear surface layer (SSL), which is an intermediate sublayer, where shear affects the isotropy of turbulence. The origin of the eddies impinging from aloft (probably from the SSL) down to the ESL is preliminarily addressed in this study, since the Doppler lidar data show evidence of linearly organized eddies embedded in the surface layer (i.e., about 100-m vertical extent) and horizontally spaced by about 300 m. This is consistent with theories predicting that the primary mechanism of eddy motion in high Reynolds number wall layers is “top-down.”

The layered structure of the surface layer also has a visible effect on vertical profiles of vertical velocity variance (w2) and momentum transport. In the ESL, w2 scales as z2/3 while it is constant or slightly decreases within the SSL. Concerning momentum transport, ejections contribute identically to the momentum flux as do sweeps in the ESL, whereas in the SSL, ejections give about 50% higher relative contribution.

Corresponding author address: Dr. Philippe Drobinski, Institut Pierre Simon Laplace/Laboratoire de Météorologie Dynamique, Ecole Polytechnique, 91128 Palaiseau Cédex, France. Email: philippe.drobinski@aero.jussieu.fr

Abstract

Recent observational data (turbulence variables by sonic anemometers and three-dimensional flow pattern by Doppler lidar), obtained during the Cooperative Atmosphere Surface Exchange Study field campaign in October 1999 (CASES-99), show evidence of a layered structure of the near-neutral surface layer: (i) the eddy surface layer (ESL), which is the lower sublayer where blocking of impinging eddies is the dominating mechanism; and (ii) the shear surface layer (SSL), which is an intermediate sublayer, where shear affects the isotropy of turbulence. The origin of the eddies impinging from aloft (probably from the SSL) down to the ESL is preliminarily addressed in this study, since the Doppler lidar data show evidence of linearly organized eddies embedded in the surface layer (i.e., about 100-m vertical extent) and horizontally spaced by about 300 m. This is consistent with theories predicting that the primary mechanism of eddy motion in high Reynolds number wall layers is “top-down.”

The layered structure of the surface layer also has a visible effect on vertical profiles of vertical velocity variance (w2) and momentum transport. In the ESL, w2 scales as z2/3 while it is constant or slightly decreases within the SSL. Concerning momentum transport, ejections contribute identically to the momentum flux as do sweeps in the ESL, whereas in the SSL, ejections give about 50% higher relative contribution.

Corresponding author address: Dr. Philippe Drobinski, Institut Pierre Simon Laplace/Laboratoire de Météorologie Dynamique, Ecole Polytechnique, 91128 Palaiseau Cédex, France. Email: philippe.drobinski@aero.jussieu.fr

Save
  • Adrian, R. J., C. D. Meinhart, and C. D. Tomkins, 2000: Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech., 422 , 154.

    • Search Google Scholar
    • Export Citation
  • Antonia, R. A., S. Rajagopalan, and A. J. Chambers, 1983: Conditional sampling of turbulence in the atmospheric surface layer. J. Climate Appl. Meteor., 22 , 6978.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105 , 221252.

    • Search Google Scholar
    • Export Citation
  • Bergström, H., and U. Högström, 1989: Turbulent exchanges above a pine forest. II. Organized structures. Bound.-Layer Meteor., 49 , 231263.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., and R. C. Foster, 1994: On PBL models for general circulation models. Global Atmos. Ocean Syst., 2 , 163183.

  • Busch, N. E., 1973: The surface boundary layer. Bound.-Layer Meteor., 4 , 213240.

  • Busch, N. E., and H. A. Panofsky, 1968: Recent spectra of atmospheric turbulence. Quart. J. Roy. Meteor. Soc., 94 , 380387.

  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux–profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28 , 181189.

    • Search Google Scholar
    • Export Citation
  • Carlotti, P., 2001: Distorted turbulence near rigid boundaries. Ph.D. thesis, University of Cambridge, 185 pp.

  • Carlotti, P., 2002: Two point properties of atmospheric turbulence very close to the ground: Comparison of a high resolution LES with theoretical models. Bound.-Layer Meteor., 104 , 381410.

    • Search Google Scholar
    • Export Citation
  • Chen, F., 1990: Turbulent characteristics over a rough natural surface. Part I: Turbulent structures. Bound.-Layer Meteor., 52 , 151175.

    • Search Google Scholar
    • Export Citation
  • Davenport, A. G., 1961: The spectrum of horizontal gustiness near the ground in high winds. Quart. J. Roy. Meteor. Soc., 87 , 194211.

  • Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29 , 91115.

  • Drobinski, P., and R. C. Foster, 2003: On the origin of near-surface streaks in the neutrally-stratified planetary boundary layer. Bound.-Layer Meteor., 108 , 247256.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., R. A. Brown, P. H. Flamant, and J. Pelon, 1998: Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar. Bound.-Layer Meteor., 88 , 343361.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., A. M. Dabas, and P. H. Flamant, 2000: Remote measurement of turbulent wind spectra by heterodyne Doppler lidar technique. J. Appl. Meteor., 39 , 24342451.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., R. K. Newsom, R. M. Banta, P. Carlotti, R. C. Foster, P. Naveau, and J. M. Redelsperger, 2002: Turbulence in a shear-driven nocturnal surface layer during the CASES'99 experiment. Preprints, 15th Symp. on Boundary Layers and Turbulence, Wageningen, Netherlands, Amer. Meteor. Soc., 273–276.

    • Search Google Scholar
    • Export Citation
  • Durbin, P. A., 1993: A Reynolds stress model for near wall turbulence. J. Fluid Mech., 23 , 181192.

  • Finnigan, J. J., 1979: Turbulence in a waving wheat. I. Mean statistics and honami. Bound.-Layer Meteor., 16 , 181211.

  • Foster, R. C., 1997: Structure and energetics of optimal Ekman layer perturbations. J. Fluid Mech., 333 , 97123.

  • Foster, R. C., and R. A. Brown, 1994: On large-scale PBL modelling: Surface wind and latent heat flux comparisons. Global Atmos. Ocean Syst., 2 , 199219.

    • Search Google Scholar
    • Export Citation
  • Fuehrer, P. L., and C. A. Friehe, 1999: A physically-based turbulent velocity time series decomposition. Bound.-Layer Meteor., 90 , 241295.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., 1986: Observations of boundary layer structure made during the 1981 KONTUR experiment. Quart. J. Roy. Meteor. Soc., 112 , 825841.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., 1992: The structure of turbulence in the near-neutral atmospheric boundary layer. J. Atmos. Sci., 49 , 226239.

  • Grant, H. L., 1958: The large eddies of turbulent motion. J. Fluid Mech., 4 , 149190.

  • Grund, C. J., R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, 2001: High-resolution Doppler lidar for boundary layer and cloud research. J. Atmos. Oceanic Technol., 18 , 376393.

    • Search Google Scholar
    • Export Citation
  • Högström, U., 1990: Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J. Atmos. Sci., 47 , 19491972.

    • Search Google Scholar
    • Export Citation
  • Högström, U., and H. Bergström, 1996: Organized turbulence structures in the near-neutral atmospheric surface layer. J. Atmos. Sci., 53 , 24522464.

    • Search Google Scholar
    • Export Citation
  • Högström, U., J. C. R. Hunt, and A. S. Smedman, 2002: Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Bound.-Layer Meteor., 103 , 101124.

    • Search Google Scholar
    • Export Citation
  • Hommema, S. E., and R. J. Adrian, 2003: Packet structure of surface eddies in the atmospheric boundary layer. Bound.-Layer Meteor., 106 , 3560.

    • Search Google Scholar
    • Export Citation
  • Hoxey, R. P., and P. J. Richards, 1992: Structure of the atmospheric boundary layer below 25m and implications to wind loading on low-rise buildings. J. Wind Eng. Ind. Aerodyn., 41 , –44. 317327.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., 1984: Turbulence structure in thermal convection and shear-free boundary layers. J. Fluid Mech., 138 , 161184.

  • Hunt, J. C. R., 2001: Dynamics and statistics of vortical eddies in turbulence. Turbulence Structure and Vortex Dynamics, J. C. R. Hunt and J. C. Vassilicos, Eds., Cambridge University Press, 192–243.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., and D. J. Carruthers, 1990: Rapid distortion theory and the ‘problems' of turbulence. J. Fluid Mech., 212 , 497532.

  • Hunt, J. C. R., and J. F. Morrison, 2000: Eddy structure in turbulent boundary layers. Eur. J. Mech. B/Fluids, 19 , 673694.

  • Hunt, J. C. R., and P. Carlotti, 2001: Statistical structure at the wall of the high Reynolds number turbulent boundary layer. Flow Turbul. Combust., 66 , 453475.

    • Search Google Scholar
    • Export Citation
  • Kader, B. A., and A. M. Yaglom, 1989: Spectra and correlation functions of surface layer atmospheric turbulence in unstable thermal stratification. Turbulence and Coherent Structures, O. Métais and M. Lesieur, Eds., Kluwer, 387–411.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., J. Borkowski, S. Panchev, D. T. Gjessing, and L. Hasse, 1969: Anisotropy of the fine structure. IBID,4, 1369–1370.

  • Kaimal, J. C., J. C. Wyngaard, Y. Izumi, and O. R. Coté, 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 98 , 563589.

    • Search Google Scholar
    • Export Citation
  • Khalsa, S. J. S., and J. A. Businger, 1977: The drag coefficient as determined by the dissipation method and its relation to intermittent convection in the surface layer. Bound.-Layer Meteor., 12 , 273297.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, T., and O. Chiba, 1985: Step-like temperature fluctuations associated with inverted ramps in a stable surface layer. Bound.-Layer Meteor., 31 , 5163.

    • Search Google Scholar
    • Export Citation
  • Kim, K. C., and R. J. Adrian, 1999: Very large-scale motion in the outer layer. Phys. Fluids, 11 , 417422.

  • Kim, S. W., and S. U. Park, 2003: Coherent structures near the surface in a strongly sheared convective boundary layer generated by large-eddy simulation. Bound.-Layer Meteor., 106 , 3560.

    • Search Google Scholar
    • Export Citation
  • Lauren, M. K., M. Menabde, A. W. Seed, and G. L. Austin, 1999: Characterisation and simulation of the multiscaling properties of the energy-containing scales of horizontal surface-layer winds. Bound.-Layer Meteor., 90 , 2146.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., 1974: Model of the height variation of the turbulence kinetic energy budget in the unstable planetary boundary layer. J. Atmos. Sci., 31 , 465474.

    • Search Google Scholar
    • Export Citation
  • Lin, C. L., 2000: Local pressure-transport structure in a convective atmospheric boundary layer. Phys. Fluids, 12 , 11121128.

  • Lin, C. L., J. C. McWilliams, C. H. Moeng, and P. P. Sullivan, 1996: Coherent structures in a neutrally-stratified planetary boundary layer. Phys. Fluids, 8 , 26262639.

    • Search Google Scholar
    • Export Citation
  • Lin, C. L., C. H. Moeng, P. P. Sullivan, and J. C. McWilliams, 1997: The effect of surface roughness on flow structures in a neutrally-stratified planetary boundary layer. Phys. Fluids, 9 , 32353249.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and J. F. Howell, 1994: The influence of coherent structures and microfronts on scaling laws using global and local transforms. J. Fluid Mech., 260 , 247270.

    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51 , 9991022.

    • Search Google Scholar
    • Export Citation
  • Mulhearn, P. J., and J. J. Finnigan, 1978: Turbulent flow over a very rough, random surface. Bound.-Layer Meteor., 15 , 109132.

  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Akad. Nauk., SSSR Geophys. Inst., 24 , 19631987.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., and R. M. Banta, 2003: Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99. J. Atmos. Sci., 60 , 1633.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., and C. J. Readings, 1979: Aircraft observations of the structure of the lower boundary layer over the sea. Quart. J. Roy. Meteor. Soc., 105 , 785802.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., 1974: The atmospheric boundary layer below 150 meters. Annu. Rev. Fluid Mech., 6 , 147177.

  • Perry, A. E., S. Henbest, and M. S. Chong, 1986: A theoretical and experimental study of wall turbulence. J. Fluid Mech., 165 , 163179.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83 , 555581.

    • Search Google Scholar
    • Export Citation
  • Raupach, M., R. Antonia, and S. Rajagopalan, 1991: Rough-wall turbulent boundary layers. Appl. Mech. Rev., 44 , 125.

  • Redelsperger, J. L., F. Mahé, and P. Carlotti, 2001: A simple and general subgrid model suitable both for surface layer and free-stream turbulence. Bound.-Layer Meteor., 101 , 375408.

    • Search Google Scholar
    • Export Citation
  • Richards, P. J., S. Fong, and R. P. Hoxey, 1997: Anisotropic turbulence in the atmospheric surface layer. J. Wind Eng. Ind. Aerodyn., 69 , –71. 903913.

    • Search Google Scholar
    • Export Citation
  • Richards, P. J., R. P. Hoxey, and J. L. Short, 1999: Spectral models of the atmospheric surface layer. Proc. 10th Int. Conf. on Wind Engineering, Copenhagen, Denmark.

    • Search Google Scholar
    • Export Citation
  • Shaw, W. J., and J. A. Businger, 1985: Intermittency and the organization of turbulence in the near-neutral marine atmospheric boundary layer. J. Atmos. Sci., 42 , 25632584.

    • Search Google Scholar
    • Export Citation
  • Sitaraman, V., 1970: Spectra and cospectra of turbulence in the atmospheric surface layer. Quart. J. Roy. Meteor. Soc., 96 , 744749.

  • Tchen, C. M., 1953: On the spectrum of energy in turbulent shear flow. J. Res. Nat. Bur. Stand., 50 , 5162.

  • Townsend, A. A., 1976: The Structure of Turbulent Shear Flows. 2d. ed. Cambridge University Press, 429 pp.

  • Weckwerth, T. M., C. J. Grund, and S. D. Mayor, 1997: Linearly-organized coherent structures in the surface layer. Preprints, 12th Symp. on Boundary Layers and Turbulence, Vancouver, BC, Canada, Amer. Meteor. Soc., 22–23.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., and J. E. Tillman, 1980: The three-dimensional structure of convection in the atmospheric surface layer. J. Atmos. Sci., 37 , 24242443.

    • Search Google Scholar
    • Export Citation
  • Yaglom, A. M., 1991: Similarity laws for wall turbulence flows. New Approaches and Concepts in Turbulence, T. Dracos and A. Tsinober, Eds., Birkhäuser, 7–27.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3006 918 52
PDF Downloads 685 141 12