Isentropic Cross-Tropopause Ozone Transport in the Northern Hemisphere

P. Jing School of Earth and Atmosphere Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by P. Jing in
Current site
Google Scholar
PubMed
Close
,
D. M. Cunnold School of Earth and Atmosphere Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by D. M. Cunnold in
Current site
Google Scholar
PubMed
Close
,
H. J. Wang School of Earth and Atmosphere Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by H. J. Wang in
Current site
Google Scholar
PubMed
Close
, and
E-S. Yang School of Earth and Atmosphere Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by E-S. Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper investigates isentropic ozone exchange between the extratropical lower stratosphere and the subtropical upper troposphere in the Northern Hemisphere. The quantification method is based on the potential vorticity (PV) mapping of Stratospheric Aerosol and Gas Experiment (SAGE)-II ozone measurements and contour advection calculations using the NASA Goddard Space Center Data Assimilation Office (DAO) analysis for the year 1990. The magnitude of the annual isentropic stratosphere-to-troposphere ozone flux is calculated to be approximately twice the flux that is directed from the troposphere into the stratosphere. The net effect is that ∼46 × 109 kg yr−1 of ozone are transferred quasi horizontally from the extratropical lower stratosphere into the subtropical upper troposphere between the isentropic surfaces of 330 and 370 K. The estimated monthly ozone fluxes show that the isentropic cross-tropopause ozone transport is stronger in summer/fall than in winter/ spring, and this seasonality is more obvious at the upper three levels (i.e., 345, 355, and 365 K) than at 335 K. The distributions of the estimated monthly ozone fluxes indicate that the isentropic stratosphere-to-troposphere ozone exchange is associated with wave breaking and occurs preferentially over the eastern Atlantic Ocean and northwest Africa in winter and over the Atlantic and Pacific Oceans in summer.

Corresponding author address: Dr. Derek M. Cunnold, 311 Ferst Drive, Atlanta, GA 30332-0340. Email: cunnold@eas.gatech.edu

Abstract

This paper investigates isentropic ozone exchange between the extratropical lower stratosphere and the subtropical upper troposphere in the Northern Hemisphere. The quantification method is based on the potential vorticity (PV) mapping of Stratospheric Aerosol and Gas Experiment (SAGE)-II ozone measurements and contour advection calculations using the NASA Goddard Space Center Data Assimilation Office (DAO) analysis for the year 1990. The magnitude of the annual isentropic stratosphere-to-troposphere ozone flux is calculated to be approximately twice the flux that is directed from the troposphere into the stratosphere. The net effect is that ∼46 × 109 kg yr−1 of ozone are transferred quasi horizontally from the extratropical lower stratosphere into the subtropical upper troposphere between the isentropic surfaces of 330 and 370 K. The estimated monthly ozone fluxes show that the isentropic cross-tropopause ozone transport is stronger in summer/fall than in winter/ spring, and this seasonality is more obvious at the upper three levels (i.e., 345, 355, and 365 K) than at 335 K. The distributions of the estimated monthly ozone fluxes indicate that the isentropic stratosphere-to-troposphere ozone exchange is associated with wave breaking and occurs preferentially over the eastern Atlantic Ocean and northwest Africa in winter and over the Atlantic and Pacific Oceans in summer.

Corresponding author address: Dr. Derek M. Cunnold, 311 Ferst Drive, Atlanta, GA 30332-0340. Email: cunnold@eas.gatech.edu

Save
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Appenzeller, C., H. C. Davies, and W. A. Norton, 1996: Fragmentation of stratospheric intrusions. J. Geophys. Res, 101 , 14351456.

  • Baker, M. N., and D. M. Cunnold, 2001: On the uses and limitations of contour advection as a technique for understanding vortex dynamics. J. Atmos. Sci, 58 , 22102221.

    • Search Google Scholar
    • Export Citation
  • Beekmann, M., and Coauthors, 1997: Stratosphere–troposphere exchange: Regional and global tropopause folding occurrence. Tropospheric Ozone Research, O. Hov, Ed., Transport and Chemical Transformation of Pollutants in the Troposphere, Vol. 6, Springer-Verlag, 131–151.

    • Search Google Scholar
    • Export Citation
  • Chameides, W. L., and J. C. G. Walker, 1973: A photochemical theory of tropospheric ozone. J. Geophys. Res, 78 , 87518760.

  • Chen, P., 1995: Isentropic cross-tropopause mass exchange in the extratropics. J. Geophys. Res, 100 , 1666116673.

  • Crutzen, P. J., 1973: A discussion of the chemistry of some minor constituents in the stratosphere and troposphere. Pure Appl. Geophys, 106 , 13851399.

    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., 1995: Ozone in the troposphere. Composition, Chemistry, and Climate of the Atmosphere, H. B. Singh, Ed., Van Nostrand- Reinhold, 349–393.

    • Search Google Scholar
    • Export Citation
  • Danielson, E. F., 1968: Stratospheric–tropospheric exchange based on radioactivity, ozone and potential vorticity. J. Atmos. Sci, 25 , 502518.

    • Search Google Scholar
    • Export Citation
  • Danielson, E. F., R. S. Hipskind, S. E. Gaines, G. W. Sachse, G. L. Gregory, and G. F. Hill, 1987: 3-dimensional analysis of potential vorticity associated with tropopause folds and observed variations of ozone and carbon monoxide. J. Geophys. Res, 92 , 21032111.

    • Search Google Scholar
    • Export Citation
  • Davis, D. D., and Coauthors, 1996: Assessment of ozone photochemistry in the western North Pacific as inferred from PEM- West A observations during the fall 1991. J. Geophys. Res, 101 , 21112134.

    • Search Google Scholar
    • Export Citation
  • Dethof, A., A. O'Neill, and J. M. Slingo, 2000a: Quantification of the isentropic mass transport across the dynamical tropopause. J. Geophys. Res, 105 , 1227912293.

    • Search Google Scholar
    • Export Citation
  • Dethof, A., A. O'Neill, J. M. Slingo, and P. Berrisford, 2000b: Quantification of isentropic water vapor transport into the lower stratosphere. Quart. J. Roy. Meteor. Soc, 126 , 17711788.

    • Search Google Scholar
    • Export Citation
  • Edouard, S., R. Vautard, and G. Brunet, 1997: On the maintenance of potential vorticity in isentropic coordinates. Quart. J. Roy. Meteor. Soc, 123 , 20692094.

    • Search Google Scholar
    • Export Citation
  • Emmons, L. K., and Coauthors, 2003: Budget of tropospheric ozone during TOPSE from two chemical transport models. J. Geophys. Res.,108, 8372, doi:10.1029/2002JD002665.

    • Search Google Scholar
    • Export Citation
  • Follows, M. J., and J. F. Austin, 1992: A zonal average model of the stratospheric contributions to the tropospheric ozone budget. J. Geophys. Res, 97 , 1804718060.

    • Search Google Scholar
    • Export Citation
  • Gidel, L. T., and M. A. Shapiro, 1980: General circulation model estimates of the net vertical flux of ozone in the lower stratosphere and the implications for the tropospheric ozone budget. J. Geophys. Res, 85 , 40494058.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., and E. Shuckburgh, 2000: Effective diffusivity as a diagnostic of atmospheric transport. Part II: Troposphere and lower stratosphere. J. Geophys. Res, 105 , 2279522810.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., T. K. Schaack, and A. J. Lenzen, 1991: Global objective tropopause analysis. Mon. Wea. Rev, 119 , 18161831.

  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys, 33 , 403439.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1991: Towards a PV-θ view of the general circulation. Tellus, 43AB , 2735.

  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, and D. Xiaosu, 2001: Climate Change 2001: The Scientific Basis–Contribution of Working Group I to the Third Assessment Report of IPCC. Cambridge University Press, 944 pp.

    • Search Google Scholar
    • Export Citation
  • Junge, C. E., 1962: Global ozone budget and exchange between stratosphere and troposphere. Tellus, 14 , 363377.

  • Lamarque, J-F., P. G. Hess, and X. X. Xie, 1999: Three-dimensional model study of the influence of stratosphere–troposphere exchange and its distribution on tropospheric chemistry. J. Geophys. Res, 104 , 2636326372.

    • Search Google Scholar
    • Export Citation
  • Lelieveld, J., and F. J. Dentener, 2000: What controls tropospheric ozone? J. Geophys. Res, 105 , 35313551.

  • Levy, H., P. S. Kasibhatla, W. J. Moxim, A. A. Klonecki, A. I. Hirsch, S. J. Oltmans, and W. L. Chameides, 1997: The global impact of human activity on tropospheric ozone. Geophys. Res. Lett, 24 , 791794.

    • Search Google Scholar
    • Export Citation
  • Liu, S. C., M. Trainer, F. C. Fehsenfeld, D. D. Parrish, E. J. Williams, D. W. Fahey, G. Hübler, and P. C. Murphy, 1987: Ozone production in the rural troposphere and the implications for regional and global ozone distributions. J. Geophys. Res, 92 , 41914207.

    • Search Google Scholar
    • Export Citation
  • Morgenstern, O., and A. Marenco, 2000: Wintertime climatology of MOZAIC ozone based on the potential vorticity and ozone analogy. J. Geophys. Res, 105 , 1548115493.

    • Search Google Scholar
    • Export Citation
  • Morgenstern, O., and G. D. Carver, 2001: Comparison of cross-tropopause transport and ozone in the upper troposphere and lower stratosphere region. J. Geophys. Res, 106 , 1020510221.

    • Search Google Scholar
    • Export Citation
  • Müller, J. F., and G. P. Brasseur, 1995: IMAGES: A 3-dimensional chemical transport model of the global troposphere. J. Geophys. Res, 100 , 1644516490.

    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., and D. W. Fahey, 1994: An estimate of the flux of stratospheric reactive nitrogen and ozone in the troposphere. J. Geophys. Res, 99 , 53255332.

    • Search Google Scholar
    • Export Citation
  • Norton, W. A., 1994: Breaking Rossby waves in a model stratosphere diagnosed by a vortex-following coordinate system and a technique for advecting material contours. J. Atmos. Sci, 51 , 654673.

    • Search Google Scholar
    • Export Citation
  • Olsen, M. A., A. R. Douglass, and M. R. Schoeberl, 2002: Estimating downward cross-tropopause ozone flux using column ozone and potential vorticity. J. Geophys. Res.,107, 4636, doi:10.1029/ 2001JD002041.

    • Search Google Scholar
    • Export Citation
  • Olsen, M. A., A. R. Douglass, and M. R. Schoeberl, 2003: A comparison of Northern and Southern Hemisphere cross-tropopause ozone flux. Geophys. Res. Lett.,30, 1412, doi:10.1029/2002GL016538.

    • Search Google Scholar
    • Export Citation
  • Postel, A. P., and M. H. Hitchman, 1999: A climatology of Rossby wave breaking along the subtropical tropopause. J. Atmos. Sci, 56 , 359373.

    • Search Google Scholar
    • Export Citation
  • Roelofs, G-J., and J. Lelieveld, 1997: Model study of the influence of cross-tropopause O3 transports on tropospheric O3 levels. Tellus, B49. 3855.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., R. B. Rood, and J. Pfaendtner, 1993: An assimilated dataset for earth science applications. Bull. Amer. Meteor. Soc, 74 , 23312342.

    • Search Google Scholar
    • Export Citation
  • Scott, R. K., and J-P. Cammas, 2002: Wave breaking and mixing at the subtropical tropopause. J. Atmos. Sci, 59 , 23472361.

  • Shepherd, T. G., J. N. Koshyk, and N. Ngan, 2000: On the nature of large-scale mixing in the stratosphere and mesosphere. J. Geophys. Res, 105 , 1243312446.

    • Search Google Scholar
    • Export Citation
  • Wang, H-J., D. M. Cunnold, L. W. Thomason, J. M. Zawodny, and G. E. Bodeker, 2002: Assessment of SAGE version 6.1 ozone data quality. J. Geophys. Res.,107, 4691, doi:10.1029/ 2002JD002418.

    • Search Google Scholar
    • Export Citation
  • Wang, P. H., D. M. Cunnold, J. M. Zawodny, R. B. Pierce, J. R. Olson, G. S. Kent, and K. M. Skeens, 1998a: Seasonal ozone variations in the isentropic layer between 330 and 380K as observed by SAGE II: Implication of extratropical cross-tropopause transport. J. Geophys. Res, 103 , 2864728659.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., D. J. Jacob, and J. A. Logan, 1998b: Global simulation of tropospheric O3-NOx-Hydrocarbon chemistry. 3. Origin of tropospheric ozone and effects of nonmethane hydrocarbons. J. Geophys. Res, 103 , 1075710767.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and R. A. Plumb, 1994: Contour advection with surgery: A technique for investigating finescale structure in tracer transport. J. Atmos. Sci, 51 , 530540.

    • Search Google Scholar
    • Export Citation
  • Zachariasse, M., P. F. J. van Velthoven, H. G. J. Smit, J. Lelieveld, T. K. Mandal, and H. Kelder, 2000: Influence of stratosphere– troposphere exchange on tropospheric ozone over the tropical Indian Ocean during the winter monsoon. J. Geophys. Res, 105 , 1540315416.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 329 110 4
PDF Downloads 101 36 3