A Statistical Description of Small-Scale Turbulence in the Low-Level Nocturnal Jet

Rod Frehlich Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Rod Frehlich in
Current site
Google Scholar
PubMed
Close
,
Yannick Meillier Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Yannick Meillier in
Current site
Google Scholar
PubMed
Close
,
Michael L. Jensen Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Michael L. Jensen in
Current site
Google Scholar
PubMed
Close
, and
Ben Balsley Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Ben Balsley in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The probability density function (PDF) and spatial statistics of both the energy dissipation rate ϵ and the temperature structure constant C2T are determined for the shear region of a nocturnal jet. The PDF of ϵ and C2T are approximately lognormal. In addition, the joint probability density function of ϵ and C2T is approximately a joint lognormal distribution. The one-dimensional spatial spectra of ϵ and C2T in the inertial region have a k−0.5 and k−0.6 dependence, respectively, where k is the horizontal spatial wavenumber.

Corresponding author address: Dr. Rod Frehlich, CIRES, Campus Box 216, University of Colorado, Boulder, CO 80309. Email: rgf@cires.colorado.edu

Abstract

The probability density function (PDF) and spatial statistics of both the energy dissipation rate ϵ and the temperature structure constant C2T are determined for the shear region of a nocturnal jet. The PDF of ϵ and C2T are approximately lognormal. In addition, the joint probability density function of ϵ and C2T is approximately a joint lognormal distribution. The one-dimensional spatial spectra of ϵ and C2T in the inertial region have a k−0.5 and k−0.6 dependence, respectively, where k is the horizontal spatial wavenumber.

Corresponding author address: Dr. Rod Frehlich, CIRES, Campus Box 216, University of Colorado, Boulder, CO 80309. Email: rgf@cires.colorado.edu

Save
  • Alisse, J., and C. Sidi, 2000: Experimental probability density functions of small-scale fluctuations in the stably stratified atmosphere. J. Fluid Mech, 402 , 137162.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., M. L. Jensen, and R. G. Frehlich, 1998: The use of state-of-the-art kites for profiling the lower atmosphere. Bound.- Layer Meteor, 87 , 125.

    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., M. L. Jensen, R. G. Frehlich, Y. Meillier, and A. Muschinski, 2003: Structure and evolution of mean and turbulence characteristics of the nighttime lower troposphere above Kansas in the presence of a low-level jet. J. Atmos. Sci, 60 , 24962508.

    • Search Google Scholar
    • Export Citation
  • Bezverkhniy, V. A., A. S. Gurvich, and V. P. Kukharets, 1986: Variability of temperature fluctuation spectra in the atmospheric boundary layer. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys, 22 , 523528.

    • Search Google Scholar
    • Export Citation
  • Bezverkhniy, V. A., A. S. Gurvich, T. I. Makarova, and M. Z. Kholmyanskiy, 1988: Variation of local temperature and wind surface speed spectra in the atmospheric surface layer. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys, 24 , 519527.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. A., 1995: Radar measurements of turbulent eddy dissipation rate in the troposphere: A comparison of techniques. J. Atmos. Oceanic Technol, 12 , 8595.

    • Search Google Scholar
    • Export Citation
  • Eaton, F. D., S. A. McLaughlin, and J. R. Hines, 1995: A new frequency-modulated continuous wave radar for studying planetary boundary layer morphology. Radio Sci, 30 , 7588.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., 1992: Laser scintillation measurements of the temperature spectrum in the atmospheric surface layer. J. Atmos. Sci, 49 , 14941509.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., S. M. Hannon, and S. W. Henderson, 1998: Coherent Doppler lidar measurements of wind field statistics. Bound.-Layer Meteor, 86 , 233256.

    • Search Google Scholar
    • Export Citation
  • Frehlich, R., Y. Meillier, M. L. Jensen, and B. Balsley, 2003: Turbulence measurements with the CIRES tethered lifting system during CASES-99: Calibration and spectral analysis of temperature and velocity. J. Atmos. Sci, 60 , 24872495.

    • Search Google Scholar
    • Export Citation
  • Frisch, U., 1995: Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, 296 pp.

  • Gibson, C. H., G. R. Stegen, and S. McConnell, 1970: Measurements of the universal constant in Kolmogoroff's third hypothesis for high Reynolds number turbulence. Phys. Fluids, 10 , 24482451.

    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., W. D. Neff, R. J. Zamora, and J. E. Gaynor, 1984: The find structure of elevated refractive layers: Implications for over-the-horizon propagation and radar sounding systems. Radio Sci, 19 , 15231533.

    • Search Google Scholar
    • Export Citation
  • Hill, R. J., 1996: Corrections to Taylor's frozen turbulence approximation. Atmos. Res, 40 , 153175.

  • Jacoby-Koaly, S., B. Campistron, S. Bernard, B. Bénech, F. Ardhuin- Girard, J. Dessens, E. Dupont, and B. Carissimo, 2002: Turbulent dissipation rate in the boundary layer via UHF wind profiler Doppler spectral width measurements. Bound.-Layer Meteor, 103 , 361389.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30 , 299303.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1962: A refinement of previous hypotheses concerning the local structure turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid. Mech, 13 , 8285.

    • Search Google Scholar
    • Export Citation
  • Kukharets, V. P., 1988: Investigation of variability of the structure characteristic of temperature in the atmospheric boundary layer. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys, 24 , 578582.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1989: Intermittency of atmospheric turbulence. J. Atmos. Sci, 46 , 7995.

  • Mandelbrot, B. B., 1991: Random multifractals: Negative dimensions and the resulting limitations of the thermodynamic formalism. Proc. Roy. Soc. London, 434A , 7988.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Yaglom, 1975: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 2. MIT Press, 874 pp.

  • Muschinski, A., and D. H. Lenschow, 2001: Future directions for research on meter- and submeter-scale atmospheric turbulence. Bull. Amer. Meteor. Soc, 82 , 28312843.

    • Search Google Scholar
    • Export Citation
  • Muschinski, A., R. Frehlich, M. L. Jensen, R. Hugo, A. Hoff, F. Eaton, and B. Balsley, 2001: Fine-scale measurements of turbulence in the lower troposphere: An intercomparison between a kite- and balloon- borne, and a helicopter-borne measurement system. Bound.-Layer Meteor, 98 , 219250.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci, 42 , 950960.

    • Search Google Scholar
    • Export Citation
  • Nelkin, M., 1981: Do the dissipation fluctuations in high Reynolds number turbulence define a universal exponent? Phys. Fluids, 24 , 556557.

    • Search Google Scholar
    • Export Citation
  • Novikov, E. A., and R. W. Stewart, 1964: Intermittency of turbulence and the spectrum of fluctuations in energy dissipation. Izv. Akad. Nauk. SSSR, Ser. Geofiz, 3 , 408413.

    • Search Google Scholar
    • Export Citation
  • Pond, S., and R. W. Stewart, 1965: Measurements of the statistical characteristics of small-scale turbulent motions (in Russian). Izv. Atmos. Oceanic Phys, 1 , 914919.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc, 83 , 555581.

    • Search Google Scholar
    • Export Citation
  • Praskovsky, A., and S. Oncley, 1994: Measurements of the Kolmogorov constant and intermittency exponent at very high Reynolds numbers. Phys. Fluids, 6 , 28862888.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., 1969: High resolution tropospheric radar sounding. Radio Sci, 4 , 12611268.

  • Roddier, F., 1981: The effects of atmospheric turbulence in optical astronomy. Prog. Opt, 19 , 280376.

  • Ruddick, B., A. Anis, and K. Thompson, 2000: Maximum likelihood spectral fitting: The Batchelor spectrum. J. Atmos. Oceanic Technol, 17 , 15411555.

    • Search Google Scholar
    • Export Citation
  • Smalikho, I. N., 1997: Accuracy of the turbulent energy dissipation rate estimation from the temporal spectrum of wind fluctuations. Atmos. Oceanic Opt, 10 , 559563.

    • Search Google Scholar
    • Export Citation
  • Smedman, A-S., 1988: Observation of a multi-level turbulence structure in a very stable atmospheric boundary layer. Bound.-Layer Meteor, 44 , 231253.

    • Search Google Scholar
    • Export Citation
  • Sreenivasan, K. R., and P. Kailasnath, 1993: An update on the intermittency exponent in turbulence. Phys. Fluids, 5 , 512514.

  • Sreenivasan, K. R., and G. Stolovitzky, 1996: Statistical dependence of inertial range properties on large scales in a high-Reynolds-number shear flow. Phys. Rev. Lett, 77 , 22182221.

    • Search Google Scholar
    • Export Citation
  • Tatarskii, V. I., 1971: The Effects of the Turbulent Atmosphere on Wave Propagation. Keter, 472 pp.

  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, A132. 476490.

  • Tyson, R. K., 1991: Principles of Adaptive Optics. Academic Press, 298 pp.

  • Van Atta, C. W., 1971: Influence of fluctuations in local dissipation rates on turbulent scalar characteristics in the inertial subrange. Phys. Fluids, 14 , 18031804.

    • Search Google Scholar
    • Export Citation
  • Van Atta, C. W., and W. Y. Chen, 1970: Structure functions of turbulence in the atmospheric boundary layer over the ocean. J. Fluid Mech, 44 , 145159.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., and S. F. Clifford, 1977: Taylor's hypothesis and high-frequency turbulence spectra. J. Atmos. Sci, 34 , 922929.

  • Yaglom, A. M., 1966: The influence of fluctuations in energy dissipation on the shape of turbulence characteristics in the inertial interval. Sov. Phys. Dokl, 11 , 2629.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 236 60 6
PDF Downloads 103 30 1