Observations of Drizzle in Nocturnal Marine Stratocumulus

M. C. vanZanten Department of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, California, and Institute of Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands

Search for other papers by M. C. vanZanten in
Current site
Google Scholar
PubMed
Close
,
B. Stevens Department of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by B. Stevens in
Current site
Google Scholar
PubMed
Close
,
G. Vali Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by G. Vali in
Current site
Google Scholar
PubMed
Close
, and
D. H. Lenschow National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by D. H. Lenschow in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In situ and radar data from the second field study of the Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) have been used to study drizzle in stratocumulus. Measurements indicate that drizzle is prevalent. During five of seven analyzed flights precipitation was evident at the surface, and on roughly a third of the flights mean surface rates approached or exceeded 0.5 mm day−1. Additional analysis of the structure and variability of drizzle indicates that the macroscopic (flight averaged) mean drizzle rates at cloud base scale with H3/N where H is the flight-averaged cloud depth and N the flight-averaged cloud droplet number concentration. To a lesser extent flight-to-flight variability in the mean drizzle rate also scales well with differences in the 11- and 4-μm brightness temperatures, and the cloud-top effective radius. The structure of stratocumulus boundary layers with precipitation reaching the surface is also investigated, and a general picture emerges of large flight-averaged drizzle rates being manifested primarily through the emergence of intense pockets of precipitation. The characteristics of the drizzle spectrum in precipitating versus nonprecipitating regions of a particular cloud layer were mostly distinguished by the number of drizzle drops present, rather than a change in size of the median drizzle drop, or the breadth of the drizzle spectrum.

Corresponding author address: M. C. vanZanten, Institute of Marine and Atmospheric Research Utrecht, Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands. Email: M.C.vanZanten@phys.uu.nl

Abstract

In situ and radar data from the second field study of the Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) have been used to study drizzle in stratocumulus. Measurements indicate that drizzle is prevalent. During five of seven analyzed flights precipitation was evident at the surface, and on roughly a third of the flights mean surface rates approached or exceeded 0.5 mm day−1. Additional analysis of the structure and variability of drizzle indicates that the macroscopic (flight averaged) mean drizzle rates at cloud base scale with H3/N where H is the flight-averaged cloud depth and N the flight-averaged cloud droplet number concentration. To a lesser extent flight-to-flight variability in the mean drizzle rate also scales well with differences in the 11- and 4-μm brightness temperatures, and the cloud-top effective radius. The structure of stratocumulus boundary layers with precipitation reaching the surface is also investigated, and a general picture emerges of large flight-averaged drizzle rates being manifested primarily through the emergence of intense pockets of precipitation. The characteristics of the drizzle spectrum in precipitating versus nonprecipitating regions of a particular cloud layer were mostly distinguished by the number of drizzle drops present, rather than a change in size of the median drizzle drop, or the breadth of the drizzle spectrum.

Corresponding author address: M. C. vanZanten, Institute of Marine and Atmospheric Research Utrecht, Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands. Email: M.C.vanZanten@phys.uu.nl

Save
  • Ackerman, A. S., O. B. Toon, and P. V. Hobbs, 1993: Dissipation of marine stratiform clouds and collapse of the marine boundary layer due to the depletion of cloud condensation nuclei by clouds. Science, 262 , 226229.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245 , 12271230.

  • Aldous, D., 1999: Deterministic and stochastic models for coalescence (aggregation, coagulation): A review of the mean-field theory for probabilists. Bernoulli, 5 , 348.

    • Search Google Scholar
    • Export Citation
  • Austin, P., Y. Wang, R. Pincus, and V. Kujala, 1995: Precipitation in stratocumulus clouds: Observational and modeling results. J. Atmos. Sci., 52 , 23292352.

    • Search Google Scholar
    • Export Citation
  • Bevington, P. R., and D. K. Robinson, 1992: Data Reduction and Data Analysis for the Physical Sciences. McGraw-Hill, 328 pp.

  • Boers, R., J. B. Jensen, and P. B. Krummel, 1996: Microphysical and short-wave radiative structure of wintertime stratocumulus over the Southern Ocean. Quart. J. Roy. Meteor. Soc., 122 , 13071339.

    • Search Google Scholar
    • Export Citation
  • Boers, R., J. B. Jensen, and P. B. Krummel, 1998: Microphysical and short-wave radiative structure of stratocumulus over the Southern Ocean: Summer results and seasonal differences. Quart. J. Roy. Meteor. Soc., 124 , 151168.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J. L., T. Bourrianne, A. de Araujo Coelho, R. J. Isbert, R. Peytavi, D. Trevarin, and P. Weschler, 1998: Improvements of droplet distribution size measurements with the fast-FSSP (forward scattering spectrometer probe). J. Atmos. Oceanic Technol., 15 , 10771090.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. Austin, and S. T. Siems, 1995: Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiment. Part II: Cloudiness, drizzle, surface fluxes, and entrainment. J. Atmos. Sci., 52 , 27242735.

    • Search Google Scholar
    • Export Citation
  • Brost, R. A., J. C. Wyngaard, and D. H. Lenschow, 1982: Marine stratocumulus layers. Part II: Turbulence budgets. J. Atmos. Sci., 39 , 818836.

    • Search Google Scholar
    • Export Citation
  • Chen, C., and W. R. Cotton, 1987: The physics of the marine stratocumulus mixed layer. J. Atmos. Sci., 44 , 29512977.

  • Duynkerke, P. G., H. Zhang, and P. J. Jonker, 1995: Microphysical and turbulent structure of nocturnal stratocumulus as observed during ASTEX. J. Atmos. Sci., 52 , 27632777.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., and Coauthors, 1999: Intercomparison of three- and one-dimensional model simulations and aircraft observations of stratocumulus. Bound.-Layer Meteor., 92 , 453487.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., and Z. Levin, 1986: The lognormal fit to raindrop spectra from frontal convective clouds in Israel. J. Climate Appl. Meteor., 25 , 13461363.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., B. Stevens, W. R. Cotton, and A. S. Frisch, 1996: The relationship between drop in-cloud residence time and drizzle production in numerically simulated stratocumulus clouds. J. Atmos. Sci., 53 , 11081122.

    • Search Google Scholar
    • Export Citation
  • Ferek, R. J., and Coauthors, 2000: Drizzle suppression in ship tracks. J. Atmos. Sci., 57 , 27072728.

  • Frisch, A. S., C. W. Fairall, and J. B. Snider, 1995: Measurement of stratus cloud and drizzle parameters in ASTEX with a K-band doppler radar and a microwave radiometer. J. Atmos. Sci., 52 , 27882799.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., 1994: New microphysics sensor for aircraft use. Atmos. Res., 31 , 235252.

  • Gerber, H., 1996: Microphysics of marine stratocumulus clouds with two drizzle modes. J. Atmos. Sci., 53 , 16491662.

  • Haddad, Z. S., S. L. Durden, and E. Im, 1996: Parameterizing the raindrop size distribution. J. Appl. Meteor., 35 , 26802688.

  • Han, Q., W. Rossow, R. Welch, A. White, and J. Chou, 1995: Validation of satellite retrievals of cloud microphysics and liquid water path using observations from FIRE. J. Atmos. Sci., 52 , 41834195.

    • Search Google Scholar
    • Export Citation
  • Hocking, L. M., 1959: The collision efficiency of small drops. Quart. J. Roy. Meteor. Soc., 85 , 4453.

  • Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128 , 229243.

    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., M. P. Khairoutdinov, D. K. Lilly, Z. N. Kogan, and Q. Liu, 1995: Modeling of stratocumulus cloud layers in a large eddy simulation model with explicit microphysics. J. Atmos. Sci., 52 , 29232940.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., 1963: The diurnal precipitation change over the sea. J. Atmos. Sci., 20 , 551556.

  • Lasher-Trapp, S. G., W. A. Cooper, and A. M. Blyth, 2002: Measurement of ultragiant aerosol particles in the atmosphere from the small cumulus microphysics study. J. Atmos. Oceanic Technol., 19 , 402408.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1984: The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quart. J. Roy. Meteor. Soc., 110 , 783820.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1987: A model of drizzle growth in warm, stratiform clouds. Quart. J. Roy. Meteor. Soc., 113 , 11411170.

  • Nicholls, S., and J. Leighton, 1986: An observational study of the structure of stratiform cloud sheets. Part I: Structure. Quart. J. Roy. Meteor. Soc., 112 , 431460.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and D. H. Lenschow, 1991: Stratiform cloud formation in the marine boundary layer. J. Atmos. Sci., 48 , 21412158.

  • Pawlowska, H., and J-L. Brenguier, 2003: An observational study of drizzle formation in stratocumulus clouds for general circulation model (GCM) parameterizations. J. Geophys. Res., 108 .8630, doi:10.1029/2002JD002679.

    • Search Google Scholar
    • Export Citation
  • Perez, J. C., F. Herrera, F. Rosa, A. Gonzales, M. Wetzel, R. Borys, and D. Lowenthal, 2000: Retrieval of marine stratus cloud droplet size from NOAA AVHRR night imagery. Remote Sens. Environ., 73 , 3145.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., and M. B. Baker, 1994: Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer. Nature, 372 , 250252.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. Butterworth Heineman, 290 pp.

  • Stevens, B., W. R. Cotton, G. Feingold, and C. H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55 , 36163638.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: Dynamics and chemistry of marine stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84 , 579593.

  • Stevens, B., G. Vali, K. Comstock, R. Wood, M. C. Zanten, P. Austin, C. S. Bretherton, and D. H. Lenschow, 2005: Pockets of open cells (POCs) and drizzle in marine stratocumulus. Bull. Amer. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Vali, G., R. D. Kelly, J. French, S. Haimov, D. Leon, R. E. McIntosh, and A. Pazmany, 1998: Finescale structure and microphysics of coastal stratus. J. Atmos. Sci., 55 , 35403564.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and Q. Wang, 1994: Roles of drizzle in a one-dimensional third-order turbulence closure model of nocturnal stratus-topped marine boundary layer. J. Atmos. Sci., 51 , 15591576.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 445 218 10
PDF Downloads 281 125 7