Corresponding author address: Dr. C. O. Hines, 15 Henry Street, Toronto, ON M5T 1W9, Canada. Email: hines@stpl.cress.yorku.ca
Allen, K. R., and R. I. Joseph, 1989: A canonical statistical theory of oceanic internal waves. J. Fluid Mech., 204 , 185–228.
Broutman, D., R. H. J. Grimshaw, and S. D. Eckermann, 2004: Internal waves in a Lagrangian reference frame. J. Atmos. Sci., 61 , 1308–1313.
Broutman, D., R. H. J. Grimshaw, and S. D. Eckermann, 2005: Reply. J. Atmos. Sci., 62 , 254–256.
Chunchuzov, I. P., 2002: On the high-wavenumber form of the Eulerian internal wave spectrum in the atmosphere. J. Atmos. Sci., 59 , 1753–1774.
Eckermann, S. D., 1999: Isentropic advection by gravity waves: Quasi-universal M−3 vertical wavenumber spectra near the onset of instability. Geophys. Res. Lett., 26 , 201–204.
Hines, C. O., 2001: Theory of the Eulerian tail in the spectra of atmospheric and oceanic internal gravity waves. J. Fluid Mech., 448 , 289–313. Corrigendum, 481, 412.
Hines, C. O., 2002: Nonlinearities and linearities in internal gravity waves of the atmosphere and oceans. Geophys. Astrophys. Fluid Dyn., 96 , 1–30.
Hines, C. O., 2004: The Doppler spread theory and parameterization revisited. J. Atmos. Solar-Terr. Phys., 66 , 949–956.
Hines, C. O., L. I. Childress, J. B. Kinney, and M. P. Sulzer, 2004: Modeling of gravity-wave tail spectra in the middle atmosphere via numerical and Doppler-spread methods. J. Atmos. Solar-Terr. Phys., 66 , 933–948.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 69 | 13 | 1 |
PDF Downloads | 12 | 5 | 1 |
Displayed acceptance dates for articles published prior to 2023 are approximate to within a week. If needed, exact acceptance dates can be obtained by emailing amsjol@ametsoc.org.
Corresponding author address: Dr. C. O. Hines, 15 Henry Street, Toronto, ON M5T 1W9, Canada. Email: hines@stpl.cress.yorku.ca
Corresponding author address: Dr. C. O. Hines, 15 Henry Street, Toronto, ON M5T 1W9, Canada. Email: hines@stpl.cress.yorku.ca
Allen, K. R., and R. I. Joseph, 1989: A canonical statistical theory of oceanic internal waves. J. Fluid Mech., 204 , 185–228.
Broutman, D., R. H. J. Grimshaw, and S. D. Eckermann, 2004: Internal waves in a Lagrangian reference frame. J. Atmos. Sci., 61 , 1308–1313.
Broutman, D., R. H. J. Grimshaw, and S. D. Eckermann, 2005: Reply. J. Atmos. Sci., 62 , 254–256.
Chunchuzov, I. P., 2002: On the high-wavenumber form of the Eulerian internal wave spectrum in the atmosphere. J. Atmos. Sci., 59 , 1753–1774.
Eckermann, S. D., 1999: Isentropic advection by gravity waves: Quasi-universal M−3 vertical wavenumber spectra near the onset of instability. Geophys. Res. Lett., 26 , 201–204.
Hines, C. O., 2001: Theory of the Eulerian tail in the spectra of atmospheric and oceanic internal gravity waves. J. Fluid Mech., 448 , 289–313. Corrigendum, 481, 412.
Hines, C. O., 2002: Nonlinearities and linearities in internal gravity waves of the atmosphere and oceans. Geophys. Astrophys. Fluid Dyn., 96 , 1–30.
Hines, C. O., 2004: The Doppler spread theory and parameterization revisited. J. Atmos. Solar-Terr. Phys., 66 , 949–956.
Hines, C. O., L. I. Childress, J. B. Kinney, and M. P. Sulzer, 2004: Modeling of gravity-wave tail spectra in the middle atmosphere via numerical and Doppler-spread methods. J. Atmos. Solar-Terr. Phys., 66 , 933–948.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 69 | 13 | 1 |
PDF Downloads | 12 | 5 | 1 |