Momentum Flux Spectrum of Convectively Forced Internal Gravity Waves and Its Application to Gravity Wave Drag Parameterization. Part I: Theory

In-Sun Song Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Search for other papers by In-Sun Song in
Current site
Google Scholar
PubMed
Close
and
Hye-Yeong Chun Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Search for other papers by Hye-Yeong Chun in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The phase-speed spectrum of momentum flux by convectively forced internal gravity waves is analytically formulated in two- and three-dimensional frameworks. For this, a three-layer atmosphere that has a constant vertical wind shear in the lowest layer, a uniform wind above, and piecewise constant buoyancy frequency in a forcing region and above is considered. The wave momentum flux at cloud top is determined by the spectral combination of a wave-filtering and resonance factor and diabatic forcing. The wave-filtering and resonance factor that is determined by the basic-state wind and stability and the vertical configuration of forcing restricts the effectiveness of the forcing, and thus only a part of the forcing spectrum can be used for generating gravity waves that propagate above cumulus clouds. The spectral distribution of the wave momentum flux is largely determined by the wave-filtering and resonance factor, but the magnitude of the momentum flux varies significantly according to spatial and time scales and moving speed of the forcing. The wave momentum flux formulation in the two-dimensional framework is extended to the three-dimensional framework. The three-dimensional momentum flux formulation is similar to the two-dimensional one except that the wave propagation in various horizontal directions and the three-dimensionality of forcing are allowed. The wave momentum flux spectrum formulated in this study is validated using mesoscale numerical model results and can reproduce the overall spectral structure and magnitude of the wave momentum flux spectra induced by numerically simulated mesoscale convective systems reasonably well.

Corresponding author address: Hye-Yeong Chun, Department of Atmospheric Sciences, Yonsei University, Shinchon-dong, Seodaemun-ku, Seoul 120-749, South Korea. Email: chy@atmos.yonsei.ac.kr

Abstract

The phase-speed spectrum of momentum flux by convectively forced internal gravity waves is analytically formulated in two- and three-dimensional frameworks. For this, a three-layer atmosphere that has a constant vertical wind shear in the lowest layer, a uniform wind above, and piecewise constant buoyancy frequency in a forcing region and above is considered. The wave momentum flux at cloud top is determined by the spectral combination of a wave-filtering and resonance factor and diabatic forcing. The wave-filtering and resonance factor that is determined by the basic-state wind and stability and the vertical configuration of forcing restricts the effectiveness of the forcing, and thus only a part of the forcing spectrum can be used for generating gravity waves that propagate above cumulus clouds. The spectral distribution of the wave momentum flux is largely determined by the wave-filtering and resonance factor, but the magnitude of the momentum flux varies significantly according to spatial and time scales and moving speed of the forcing. The wave momentum flux formulation in the two-dimensional framework is extended to the three-dimensional framework. The three-dimensional momentum flux formulation is similar to the two-dimensional one except that the wave propagation in various horizontal directions and the three-dimensionality of forcing are allowed. The wave momentum flux spectrum formulated in this study is validated using mesoscale numerical model results and can reproduce the overall spectral structure and magnitude of the wave momentum flux spectra induced by numerically simulated mesoscale convective systems reasonably well.

Corresponding author address: Hye-Yeong Chun, Department of Atmospheric Sciences, Yonsei University, Shinchon-dong, Seodaemun-ku, Seoul 120-749, South Korea. Email: chy@atmos.yonsei.ac.kr

Save
  • Alexander, M. J., and L. Pfister, 1995: Gravity wave momentum flux in the lower stratosphere over convection. Geophys. Res. Lett., 22 , 20292032.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and J. R. Holton, 1997: A model study of zonal forcing in the equatorial stratosphere by convectively induced gravity waves. J. Atmos. Sci., 54 , 408419.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and J. R. Holton, 2004: On the spectrum of vertically propagating gravity waves generated by a transient heat source. Atmos. Chem. Phys. Discuss., 4 , 923932.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., J. R. Holton, and D. R. Durran, 1995: The gravity wave response above deep convection in a squall line simulation. J. Atmos. Sci., 52 , 22122226.

    • Search Google Scholar
    • Export Citation
  • Arfken, G. B., and H. J. Weber, 1995: Mathematical Methods for Physicists. 4th ed. Academic Press, 1029 pp.

  • Baldwin, M., and T. J. Dunkerton, 1998: Biennial, quasi-biennial, and decadal oscillations of potential vorticity in the northern stratosphere. J. Geophys. Res., 103 , 39193928.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., M. J. Alexander, and J. R. Holton, 2002: Effects of tropospheric wind shear on the spectrum of convectively generated gravity waves. J. Atmos. Sci., 59 , 18051824.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., M. J. Alexander, and J. R. Holton, 2004: A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. J. Atmos. Sci., 61 , 324337.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and M. L. Salby, 1994: Equatorial wave activity derived from fluctuations in observed convection. J. Atmos. Sci., 51 , 37913806.

    • Search Google Scholar
    • Export Citation
  • Booker, J. R., and F. P. Bretherton, 1967: The critical layer for internal gravity waves in a shear flow. J. Fluid Mech., 27 , 513539.

    • Search Google Scholar
    • Export Citation
  • Chun, H-Y., and J-J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55 , 32993310.

    • Search Google Scholar
    • Export Citation
  • Chun, H-Y., and J-J. Baik, 2002: An updated parameterization of convectively forced gravity wave drag for use in large-scale models. J. Atmos. Sci., 59 , 10061017.

    • Search Google Scholar
    • Export Citation
  • Chun, H-Y., M-D. Song, and J-W. Kim, 2001: Effects of gravity wave drag induced by cumulus convection on the atmospheric general circulation. J. Atmos. Sci., 58 , 302319.

    • Search Google Scholar
    • Export Citation
  • Chun, H-Y., I-S. Song, J-J. Baik, and Y-J. Kim, 2004: Impact of a convectively forced gravity wave drag parameterization in NCAR CCM3. J. Climate, 17 , 35303547.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., 2003: Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs. Wea. Forecasting, 18 , 9971017.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., J. H. Merritt, and J. M. Fritsch, 1996: Predicting the movement of mesoscale convective complexes. Wea. Forecasting, 11 , 4146.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102 , 2605326076.

  • Fleming, E. L., S. Chandra, J. J. Barnett, and M. Corney, 1990: Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude. Adv. Space Res., 10 , 1159.

    • Search Google Scholar
    • Export Citation
  • Fovell, R., D. Durran, and J. R. Holton, 1992: Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49 , 14271442.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and B. A. Boville, 1994: “Downward control” of the mean meridional circulation and temperature distribution of the polar winter stratosphere. J. Atmos. Sci., 51 , 22382245.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 1998: Effects of an imposed quasi-biennial oscillation in a comprehensive troposphere–stratosphere–mesosphere general circulation model. J. Atmos. Sci., 55 , 23932418.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48 , 651678.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1982: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci., 39 , 791799.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29 , 10761080.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and H-C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37 , 22002208.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and H-C. Tan, 1982: The quasi-biennial oscillation in the Northern Hemisphere lower stratosphere. J. Meteor. Soc. Japan, 60 , 140148.

    • Search Google Scholar
    • Export Citation
  • Kershaw, R., 1995: Parameterization of momentum transport by convectively generated gravity waves. Quart. J. Roy. Meteor. Soc., 121 , 10231040.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, T. L. Clark, and H-M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60 , 12971321.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., and H-Y. Chun, 1991: Effects of diabatic cooling in a shear flow with a critical level. J. Atmos. Sci., 48 , 24762491.

  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity waves and tidal breakdown. J. Geophys. Res., 86 , 97079714.

  • Lindzen, R. S., and J. R. Holton, 1968: A theory of the quasi-biennial oscillation. J. Atmos. Sci., 25 , 10951107.

  • Matsuno, T., 1982: A quasi one-dimensional model of the middle atmosphere circulation interacting with internal gravity waves. J. Meteor. Soc. Japan, 60 , 215227.

    • Search Google Scholar
    • Export Citation
  • Pfister, L., S. Scott, M. Loewenstein, S. Bowen, and M. Legg, 1993: Mesoscale disturbances in the tropical stratosphere excited by convection: Observations and effects on the stratospheric momentum budget. J. Atmos. Sci., 50 , 10581075.

    • Search Google Scholar
    • Export Citation
  • Piani, C., D. Durran, M. J. Alexander, and J. R. Holton, 2000: A numerical study of three-dimensional gravity waves triggered by deep tropical convection and their role in the dynamics of the QBO. J. Atmos. Sci., 57 , 36893702.

    • Search Google Scholar
    • Export Citation
  • Piessens, R., E. de Doncker-Kapenga, C. W. Uberhuber, and D. K. Kahaner, 1983: QUADPACK: A Subroutine Package for Automatic Integration. Springer-Verlag, 301 pp.

    • Search Google Scholar
    • Export Citation
  • Rind, D., R. Suozzo, N. K. Balachandran, A. Lacis, and G. Russel, 1988: The GISS global climate–middle atmosphere model. Part I: Model structure and climatology. J. Atmos. Sci., 45 , 329370.

    • Search Google Scholar
    • Export Citation
  • Salby, M., and R. Garcia, 1987: Transient response to localized episodic heating in the Tropics. Part I: Excitation and short-time near-field behavior. J. Atmos. Sci., 44 , 458498.

    • Search Google Scholar
    • Export Citation
  • Sato, K., 1993: Small-scale wind disturbance observed by the MU radar during the passage of Typhoon Kelly. J. Atmos. Sci., 50 , 518537.

    • Search Google Scholar
    • Export Citation
  • Song, I-S., H-Y. Chun, and T. P. Lane, 2003: Generation mechanisms of convectively forced internal gravity waves and their propagation to the stratosphere. J. Atmos. Sci., 60 , 19601980.

    • Search Google Scholar
    • Export Citation
  • Swinbank, R., and A. O’Neill, 1994: A stratosphere–troposphere data assimilation system. Mon. Wea. Rev., 122 , 686702.

  • Vincent, R. A., and M. J. Alexander, 2000: Gravity waves in the tropical lower stratosphere: An observational study of seasonal and interannual variability. J. Geophys. Res., 105 , 1797117982.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 309 78 5
PDF Downloads 203 41 1