An Arctic Springtime Mixed-Phase Cloudy Boundary Layer Observed during SHEBA

P. Zuidema Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Environmental Technology Laboratory, Boulder, Colorado

Search for other papers by P. Zuidema in
Current site
Google Scholar
PubMed
Close
,
B. Baker Stratton Park Engineering Company, Boulder, Colorado

Search for other papers by B. Baker in
Current site
Google Scholar
PubMed
Close
,
Y. Han NOAA/National Environmental Satellite, Data, and Information Service, Camp Springs, Maryland

Search for other papers by Y. Han in
Current site
Google Scholar
PubMed
Close
,
J. Intrieri NOAA/Environmental Technology Laboratory, Boulder, Colorado

Search for other papers by J. Intrieri in
Current site
Google Scholar
PubMed
Close
,
J. Key NOAA/National Environmental Satellite, Data, and Information Service, Madison, Wisconsin

Search for other papers by J. Key in
Current site
Google Scholar
PubMed
Close
,
P. Lawson Stratton Park Engineering Company, Boulder, Colorado

Search for other papers by P. Lawson in
Current site
Google Scholar
PubMed
Close
,
S. Matrosov Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Environmental Technology Laboratory, Boulder, Colorado

Search for other papers by S. Matrosov in
Current site
Google Scholar
PubMed
Close
,
M. Shupe Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Environmental Technology Laboratory, Boulder, Colorado

Search for other papers by M. Shupe in
Current site
Google Scholar
PubMed
Close
,
R. Stone *Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Climate Monitoring Diagnostics Laboratory, Boulder, Colorado

Search for other papers by R. Stone in
Current site
Google Scholar
PubMed
Close
, and
T. Uttal NOAA/Environmental Technology Laboratory, Boulder, Colorado

Search for other papers by T. Uttal in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The microphysical characteristics, radiative impact, and life cycle of a long-lived, surface-based mixed-layer, mixed-phase cloud with an average temperature of approximately −20°C are presented and discussed. The cloud was observed during the Surface Heat Budget of the Arctic experiment (SHEBA) from 1 to 10 May 1998. Vertically resolved properties of the liquid and ice phases are retrieved using surface-based remote sensors, utilize the adiabatic assumption for the liquid component, and are aided by and validated with aircraft measurements from 4 and 7 May. The cloud radar ice microphysical retrievals, originally developed for all-ice clouds, compare well with aircraft measurements despite the presence of much greater liquid water contents than ice water contents. The retrieved time-mean liquid cloud optical depth of 10.1 ± 7.8 far surpasses the mean ice cloud optical depth of 0.2, so that the liquid phase is primarily responsible for the cloud’s radiative (flux) impact. The ice phase, in turn, regulates the overall cloud optical depth through two mechanisms: sedimentation from a thin upper ice cloud, and a local ice production mechanism with a time scale of a few hours, thought to reflect a preferred freezing of the larger liquid drops. The liquid water paths replenish within half a day or less after their uptake by ice, attesting to strong water vapor fluxes. Deeper boundary layer depths and higher cloud optical depths coincide with large-scale rising motion at 850 hPa, but the synoptic activity is also associated with upper-level ice clouds. Interestingly, the local ice formation mechanism appears to be more active when the large-scale subsidence rate implies increased cloud-top entrainment. Strong cloud-top radiative cooling rates promote cloud longevity when the cloud is optically thick. The radiative impact of the cloud upon the surface is significant: a time-mean positive net cloud forcing of 41 W m−2 with a diurnal amplitude of ∼20 W m−2. This is primarily because a high surface reflectance (0.86) reduces the solar cooling influence. The net cloud forcing is primarily sensitive to cloud optical depth for the low-optical-depth cloudy columns and to the surface reflectance for the high-optical-depth cloudy columns. Any projected increase in the springtime cloud optical depth at this location (76°N, 165°W) is not expected to significantly alter the surface radiation budget, because clouds were almost always present, and almost 60% of the cloudy columns had optical depths >6.

Corresponding author address: Dr. Paquita Zuidema, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1098. Email: pzuidema@rsmas.miami.edu

Abstract

The microphysical characteristics, radiative impact, and life cycle of a long-lived, surface-based mixed-layer, mixed-phase cloud with an average temperature of approximately −20°C are presented and discussed. The cloud was observed during the Surface Heat Budget of the Arctic experiment (SHEBA) from 1 to 10 May 1998. Vertically resolved properties of the liquid and ice phases are retrieved using surface-based remote sensors, utilize the adiabatic assumption for the liquid component, and are aided by and validated with aircraft measurements from 4 and 7 May. The cloud radar ice microphysical retrievals, originally developed for all-ice clouds, compare well with aircraft measurements despite the presence of much greater liquid water contents than ice water contents. The retrieved time-mean liquid cloud optical depth of 10.1 ± 7.8 far surpasses the mean ice cloud optical depth of 0.2, so that the liquid phase is primarily responsible for the cloud’s radiative (flux) impact. The ice phase, in turn, regulates the overall cloud optical depth through two mechanisms: sedimentation from a thin upper ice cloud, and a local ice production mechanism with a time scale of a few hours, thought to reflect a preferred freezing of the larger liquid drops. The liquid water paths replenish within half a day or less after their uptake by ice, attesting to strong water vapor fluxes. Deeper boundary layer depths and higher cloud optical depths coincide with large-scale rising motion at 850 hPa, but the synoptic activity is also associated with upper-level ice clouds. Interestingly, the local ice formation mechanism appears to be more active when the large-scale subsidence rate implies increased cloud-top entrainment. Strong cloud-top radiative cooling rates promote cloud longevity when the cloud is optically thick. The radiative impact of the cloud upon the surface is significant: a time-mean positive net cloud forcing of 41 W m−2 with a diurnal amplitude of ∼20 W m−2. This is primarily because a high surface reflectance (0.86) reduces the solar cooling influence. The net cloud forcing is primarily sensitive to cloud optical depth for the low-optical-depth cloudy columns and to the surface reflectance for the high-optical-depth cloudy columns. Any projected increase in the springtime cloud optical depth at this location (76°N, 165°W) is not expected to significantly alter the surface radiation budget, because clouds were almost always present, and almost 60% of the cloudy columns had optical depths >6.

Corresponding author address: Dr. Paquita Zuidema, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1098. Email: pzuidema@rsmas.miami.edu

Save
  • Albrecht, B. A., C. Fairall, D. Thomson, A. White, and J. Snider, 1990: Surface-based remote sensing of the observed and the adiabatic liquid water content. Geophys. Res. Lett., 17 , 8992.

    • Search Google Scholar
    • Export Citation
  • Alvarez, R., W. Eberhard, J. Intrieri, C. Grund, and S. Sandberg, 1998: A depolarization and backscatter lidar for unattended operation in varied meteorological conditions. Preprints,. 10th Amer. Meteor. Soc. Symp. on Meteorological Observations and Instrumentation, Phoenix, AZ, Amer. Meteor. Soc., CD-ROM, 3B. 8.

    • Search Google Scholar
    • Export Citation
  • Baker, B., C. Schmitt, P. Lawson, and D. Mitchell, 2002: Further analysis and improvements of ice crystal mass–size relationships. Preprints,. 11th Amer. Meteor. Soc. Conf. on Cloud Physics, Ogden, UT, Amer. Meteor. Soc., CD-ROM, P2. 15.

    • Search Google Scholar
    • Export Citation
  • Beesley, J. A., and R. E. Moritz, 1999: Toward an explanation of the annual cycle of cloudiness over the Arctic Ocean. J. Climate, 12 , 395415.

    • Search Google Scholar
    • Export Citation
  • Boudala, F., G. Isaac, Q. Fu, and S. Cober, 2002: Parameterization of effective ice particle size for high-latitude clouds. Int. J. Climatol., 22 , 12671284.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12 , 410414.

    • Search Google Scholar
    • Export Citation
  • Carrió, G. G., H. Jiang, and W. R. Cotton, 2005: Impact of aerosol intrusions on the Arctic boundary layer and on sea ice melting rates. Part I: 4 May 1998 case. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Chapman, W. L., and J. E. Walsh, 1993: Recent variations of sea ice and air temperatures in high latitudes. Bull. Amer. Meteor. Soc., 73 , 3347.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., J. A. Francis, and J. R. Miller, 2002: Surface temperature of the Arctic: Comparison of TOVS satellite retrievals with surface observations. J. Climate, 15 , 36983708.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., 1986: Interactions among turbulence, radiation, and microphysics in Arctic stratus clouds. J. Atmos. Sci., 43 , 90106.

  • Curry, J. A., and E. E. Ebert, 1992: Annual cycle of radiative fluxes over the Arctic Ocean: Sensitivity to cloud optical properties. J. Climate, 5 , 12671280.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., E. E. Ebert, and G. F. Herman, 1988: Mean and turbulence structure of the summertime Arctic cloudy boundary layer. Quart. J. Roy. Meteor. Soc., 114 , 715746.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., W. B. Rossow, D. Randall, and J. L. Schramm, 1996: Overview of Arctic cloud and radiation characteristics. J. Climate, 9 , 17311764.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and Coauthors, 2000: FIRE Arctic Clouds Experiment. Bull. Amer. Meteor. Soc., 81 , 529.

  • Daniel, J. S., S. Solomon, R. Portmann, A. O. Langford, and C. S. Eubank, 2002: Cloud liquid water and ice measurements from spectrally resolved near-infrared observations: A new technique. J. Geophys. Res., 107 .4599, doi: 10.1029/2001JD000688.

    • Search Google Scholar
    • Export Citation
  • Dong, X., G. G. Mace, P. Minnis, and D. F. Young, 2001: Arctic stratus cloud properties and their effect on the surface radiation budget: Selected cases from FIRE ACE. J. Geophys. Res., 106 , 1529715312.

    • Search Google Scholar
    • Export Citation
  • Dutton, E., A. Farhadi, R. Stone, C. Long, and D. Nelson, 2004: Long-term variations in the occurrence and effective solar transmission of clouds as determined from surface-based irradiance observations. J. Geophys. Res., 109 .D03204, doi: 10.1029/2003JD003568.

    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., C. W. Fairall, and J. B. Snider, 1995: Measurement of stratus cloud and drizzle parameters in ASTEX with a Kα-band Doppler radar and a microwave radiometer. J. Atmos. Sci., 52 , 27882799.

    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., G. Feingold, C. W. Fairall, T. Uttal, and J. B. Snider, 1998: On cloud radar and microwave radiometer measurements of stratus cloud liquid water profiles. J. Geophys. Res., 103 , 2319523197.

    • Search Google Scholar
    • Export Citation
  • Frisch, A. S., M. Shupe, I. Djalalova, G. Feingold, and M. Poellot, 2002: The retrieval of stratus cloud droplet effective radius with cloud radars. J. Atmos. Oceanic Technol., 19 , 835842.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9 , 20582082.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., 1996: Microphysics of marine stratocumulus clouds with two drizzle modes. J. Atmos. Sci., 53 , 13631377.

  • Groves, D. G., and J. A. Francis, 2002: Variability of the Arctic atmospheric moisture budget from TOVS satellite data. J. Geophys. Res., 107 .4785, doi: 10.1029/2002JD002285.

    • Search Google Scholar
    • Export Citation
  • Han, Y., and E. R. Westwater, 1995: Remote sensing of tropospheric water vapor and cloud liquid water by integrated ground-based sensors. J. Atmos. Oceanic Technol., 12 , 10501059.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., T. Reisin, W. R. Cotton, and S. M. Kreidenweis, 1999: Cloud resolving simulations of Arctic stratus. Part II: Transition-season clouds. Atmos. Res., 51 , 4575.

    • Search Google Scholar
    • Export Citation
  • Herman, G. F., and J. A. Curry, 1984: Observational and theoretical studies of solar radiation in Arctic stratus clouds. J. Climate Appl. Meteor., 23 , 524.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemar, S. Lewis, J. Iaquinta, M. Kajikawa, C. Twohy, and M. Poellot, 2002: A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59 , 329.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1985: Ice particle concentrations in clouds. J. Atmos. Sci., 42 , 25232549.

  • Hobbs, P. V., and A. L. Rangno, 1998: Microstructures of low and middle-level clouds over the Beaufort Sea. Quart. J. Roy. Meteor. Soc., 124 , 20352071.

    • Search Google Scholar
    • Export Citation
  • Hogan, R., P. Francis, H. Flentje, A. Illingworth, M. Quante, and J. Pelon, 2003: Characteristics of mixed-phase clouds. I: Lidar, radar and aircraft observations from CLARE ’98. Quart. J. Roy. Meteor. Soc., 129 , 20892116.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., L. G. M. Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell, 1995: Climate Change 1995—The Science of Climate Change. Cambridge University Press, 584 pp.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J., C. Fairall, M. Shupe, P. Persson, E. Andreas, P. Guest, and R. Moritz, 2002a: An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res., 107 .8039, doi: 10.1029/2000JC000439.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J., M. Shupe, T. Uttal, and B. McCarty, 2002b: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107 .8030, doi: 10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Ivanova, D., D. L. Mitchell, W. P. Arnott, and M. Poellot, 2001: A GCM parameterization for bimodal size spectra and ice mass removal rates in mid-latitude cirrus clouds. Atmos. Res., 59–60 , 89113.

    • Search Google Scholar
    • Export Citation
  • Jayaweera, K., and T. Ohtake, 1973: Concentration of ice crystals in arctic stratus clouds. J. Res. Atmos., 7 , 199207.

  • Jiang, H., W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth, 2000: Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: Sensitivity to concentration of ice crystals and large-scale heat and moisture advection. J. Atmos. Sci., 57 , 21052117.

    • Search Google Scholar
    • Export Citation
  • Key, J., 2001: Streamer user’s guide. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin, 96 pp.

  • Key, J., P. Yang, B. Baum, and S. Nasiri, 2002: Parameterization of shortwave ice cloud optical properties for various particle habits. J. Geophys. Res., 107 .4181, doi: 10.1029/2001JD000742.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., G. A. Isaac, and J. Hallett, 1999: Ice particle habits in Arctic clouds. Geophys. Res. Lett., 26 , 12991302.

  • Korolev, A., G. A. Isaac, S. G. Cober, J. W. Strapp, and J. Hallett, 2003: Microphysical characterization of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129 , 3965.

    • Search Google Scholar
    • Export Citation
  • Lawson, R., 2003: Continued quality-control and analysis of aircraft microphysical measurements. Final Report, NASA FIRE.ACE LaRC PO No. L–14,363, 40 pp.

  • Lawson, R., B. A. Baker, C. G. Schmitt, and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res., 106 , 1498915014.

    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., G. A. Hufford, and T. Manabe, 1991: A model for the complex permittivity of water at frequencies below 1 Thz. Int. J. Infrared Millimeter Waves, 12 , 659675.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79 , 21852197.

  • Matrosov, S., A. V. Korolev, and A. J. Heymsfield, 2002: Profiling cloud ice mass and particle characteristic size from Doppler radar measurements. J. Atmos. Oceanic Technol., 19 , 10031018.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S., M. Shupe, A. J. Heymsfield, and P. Zuidema, 2003: Ice cloud optical thickness and extinction estimates from radar measurements. J. Appl. Meteor., 42 , 15841597.

    • Search Google Scholar
    • Export Citation
  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57 , 295311.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 2002: Effective diameter in radiation transfer: General definition, applications, and limitations. J. Atmos. Sci., 59 , 23302346.

    • Search Google Scholar
    • Export Citation
  • Moran, K. P., B. E. Martner, M. J. Post, R. Kropfli, D. C. Welsh, and K. B. Widener, 1998: An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79 , 443455.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, M. Shupe, and P. Zuidema, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part II: Single-column modeling of Arctic clouds. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., D. J. Cavalieri, P. Gloersen, H. J. Zwally, and J. C. Comiso, 1999: Arctic sea ice extents, areas, and trends, 1978–1996. J. Geophys. Res., 104 , 2083720856.

    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., and J. R. Key, 2003: Antarctic cloud radiative forcing at the surface estimated from the AVHRR Polar Pathfinder and ISCCP D1 datasets, 1985–1993. J. Appl. Meteor., 42 , 827840.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., T. C. Grenfell, B. Light, and P. V. Hobbs, 2002: Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res., 107 .8044, doi: 10.1029/2000JC000438.

    • Search Google Scholar
    • Export Citation
  • Persson, O., C. W. Fairall, E. L. Andreas, P. S. Guest, and D. K. Perovich, 2002: Measurements near the atmospheric surface flux group tower at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res., 107 .8045, doi: 10.1029/2000JC000705.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., 1998: Autumnal mixed-phase cloudy boundary layers in the Arctic. J. Atmos. Sci., 55 , 20162038.

  • Pinto, J. O., J. A. Curry, and J. M. Intrieri, 2001: Cloud–aerosol interactions during autumn over Beaufort Sea. J. Geophys. Res., 106 , 1507715097.

    • Search Google Scholar
    • Export Citation
  • Rangno, A., and P. Hobbs, 2001: Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations. J. Geophys. Res., 106 , 1506515075.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., P. J. DeMott, and S. M. Kreidenweis, 2001: Airborne measurements of tropospheric ice-nucleating aerosol particles in the Arctic spring. J. Geophys. Res., 106 , 1505315063.

    • Search Google Scholar
    • Export Citation
  • Rosenkranz, P. W., 1998: Water vapor microwave continuum absorption: A comparison of measurements and models. Radio Sci., 33 , 919928.

    • Search Google Scholar
    • Export Citation
  • Schweiger, A. J., and J. R. Key, 1994: Arctic Ocean radiative fluxes and cloud forcing estimates from the ISCCP C2 cloud dataset. J. Appl. Meteor., 33 , 948963.

    • Search Google Scholar
    • Export Citation
  • Selby, J., E. Shettle, and R. McClatchey, 1976: Atmospheric transmittance from 0.25 to 28.5 μm. Supplement LOWTRAN 3B. Air Force Geophysics Laboratory, Environmental Research Paper, No. 587, 78 pp.

  • Serreze, M., and Coauthors, 2000: Observational evidence of recent change in the northern high-latitude environment. Climatic Change, 46 , 159207.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., T. Uttal, S. Matrosov, and A. S. Frisch, 2001: Cloud water contents and hydrometeor sizes during the FIRE-Arctic Clouds Experiment. J. Geophys. Res., 106 , 1501515028.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S. Tsay, W. Wiscombe, and I. Laszlo, 2000: A general-purpose numerically stable computer code for discrete-ordinate-method radiative transfer in scattering and emitting layered media. DISORT Report Vol. 1.1, 56 pp.

  • Stankov, B. B., B. E. Martner, and M. K. Politovich, 1995: Moisture profiling of the cloudy winter atmosphere using combined remote sensors. J. Atmos. Oceanic Technol., 12 , 488510.

    • Search Google Scholar
    • Export Citation
  • Stone, R., 1997: Variatons in western arctic temperatures in response to cloud radiative and synoptic-scale influences. J. Geophys. Res., 102 , 2176921776.

    • Search Google Scholar
    • Export Citation
  • Stone, R., J. Key, and E. Dutton, 1993: Properties and decay of stratospheric aerosols in the arctic following the 1991 eruptions of Mount Pinatubo. Geophys. Res. Lett., 20 , 23592362.

    • Search Google Scholar
    • Export Citation
  • Stone, R., E. Dutton, J. Harris, and D. Longenecker, 2002: Earlier spring snowmelt in northern Alaska as an indicator of climate change. J. Geophys. Res., 107 .4089, doi: 10.1029/2000JD000286.

    • Search Google Scholar
    • Export Citation
  • Sturm, M., C. Racine, and K. Tape, 2001: Increasing shrub abundance in the Arctic. Nature, 411 , 546547.

  • Sun, Z., and K. Shine, 1994: Studies of the radiative properties of ice and mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 120 , 111137.

    • Search Google Scholar
    • Export Citation
  • Tao, X., J. E. Walsh, and W. L. Chapman, 1996: An assessment of global climate model simulations of Arctic air temperatures. J. Climate, 9 , 10601076.

    • Search Google Scholar
    • Export Citation
  • Turner, D., S. Ackerman, B. Baum, H. Revercomb, and P. Yang, 2003: Cloud phase determination using ground-based AERI observations at SHEBA. J. Appl. Meteor., 42 , 701715.

    • Search Google Scholar
    • Export Citation
  • Uttal, T., and Coauthors, 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83 , 255275.

  • Vavrus, S., 2004: The impact of cloud feedbacks on Arctic climate under greenhouse forcing. J. Climate, 17 , 603615.

  • Walsh, J. E., and W. L. Chapman, 1998: Arctic cloud–radiation–temperature associations in observational data and atmospheric reanalyses. J. Climate, 11 , 30303045.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Q. Wang, R. E. Jordan, and P. O. G. Persson, 2001: Interactions among longwave radiation of clouds, turbulence, and snow surface temperature in the Arctic: A model sensitivity study. J. Geophys. Res., 106 , 1532315333.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and J. R. Key, 2003: Recent trends in Arctic surface, cloud, and radiation properties from space. Science, 299 , 17251728.

  • Wang, Z., K. Sassen, D. N. Whiteman, and B. D. Demoz, 2004: Studying altocumulus with ice virga using ground-based active and passive remote sensors. J. Appl. Meteor., 43 , 449460.

    • Search Google Scholar
    • Export Citation
  • Westwater, E. R., Y. Han, M. D. Shupe, and S. Y. Matrosov, 2001: Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during the Surface Heat Budget of the Arctic Ocean project. J. Geophys. Res., 106 , 3201932030.

    • Search Google Scholar
    • Export Citation
  • Wood, R., C. Bretherton, and D. L. Hartmann, 2002: Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophys. Res. Lett., 29 .2092, doi: 10.1029/2002GL015371.

    • Search Google Scholar
    • Export Citation
  • Wylie, D., 2001: Arctic weather during FIRE/ACE 1998. J. Geophys. Res., 106 , 1536315375.

  • Wylie, D., and J. Hudson, 2002: Effects of long-range transport and clouds on cloud condensation nuclei in the springtime Arctic. J. Geophys. Res., 107 .4138, doi: 10.1029/2001JD000759.

    • Search Google Scholar
    • Export Citation
  • Yum, S. S., and J. G. Hudson, 2001: Vertical distributions of cloud condensation nuclei spectra over the springtime Arctic Ocean. J. Geophys. Res., 106 , 1504515052.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., K. Stamnes, and S. A. Bowling, 1996: Impact of clouds on surface radiative fluxes and snowmelt in the Arctic and subarctic. J. Climate, 9 , 21102123.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and D. Hartmann, 1995: Satellite determination of stratus cloud microphysical properties. J. Climate, 8 , 16381657.

  • Zuidema, P., and K. F. Evans, 1998: On the validity of the independent pixel approximation for boundary layer clouds observed during ASTEX. J. Geophys. Res., 103 , 60596074.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 516 155 15
PDF Downloads 319 115 4