Aerosol Characteristics and Radiative Impacts over the Arabian Sea during the Intermonsoon Season: Results from ARMEX Field Campaign

K. Krishna Moorthy Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum, India

Search for other papers by K. Krishna Moorthy in
Current site
Google Scholar
PubMed
Close
,
S. Suresh Babu Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum, India

Search for other papers by S. Suresh Babu in
Current site
Google Scholar
PubMed
Close
, and
S. K. Satheesh Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India

Search for other papers by S. K. Satheesh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During the second phase of the Arabian Sea Monsoon Experiment (ARMEX-II), extensive measurements of spectral aerosol optical depth, mass concentration, and mass size distribution of ambient aerosols as well as mass concentration of aerosol black carbon (BC) were made onboard a research vessel during the intermonsoon period (i.e., when the monsoon winds are in transition from northeasterlies to westerlies/southwesterlies) over the Arabian Sea (AS) adjoining the Indian Peninsula. Simultaneous measurements of spectral aerosol optical depths (AODs) were made at different regions over the adjoining Indian landmass. Mean AODs (at 500-nm wavelength) over the ocean (∼0.44) were comparable to those over the coastal land (∼0.47), but were lower than the values observed over the plateau regions of central Indian Peninsula (∼0.61). The aerosol properties were found to respond distinctly with respect to change in the trajectories, with higher optical depths and flatter AOD spectra associated with trajectories indicating advection from west Asia, and northwest and west-coastal India. On average, BC constituted only ∼2.2% to total aerosol mass compared to the climatological values of ∼6% over the coastal land during the same season.

These data are used to characterize the physical properties of aerosols and to assess the resulting short-wave direct aerosol forcing. The mean values were –27 W m−2 at the surface and −12 W m−2 at the top of the atmosphere (TOA), resulting in a net atmospheric forcing of +15 W m−2. The forcing also depended on the region from where the advection predominates. The surface and atmospheric forcing were in the range −40 to −57 W m−2 and +27 to +39 W m−2, respectively, corresponding to advection from the west Asian and western coastal India where they were as low as −19 and +10 W m−2, respectively, when the advection was mainly from the Bay of Bengal and from central/peninsular India. In all these cases, the net atmospheric forcing (heating) efficiency was lower than the values reported for northern Indian Ocean during northern winter, which is attributed to the reduced BC mass fraction.

Corresponding author address: K. Krishna Moorthy, Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum 695 022, India. Email: k-k-moorthy@eth.net

Abstract

During the second phase of the Arabian Sea Monsoon Experiment (ARMEX-II), extensive measurements of spectral aerosol optical depth, mass concentration, and mass size distribution of ambient aerosols as well as mass concentration of aerosol black carbon (BC) were made onboard a research vessel during the intermonsoon period (i.e., when the monsoon winds are in transition from northeasterlies to westerlies/southwesterlies) over the Arabian Sea (AS) adjoining the Indian Peninsula. Simultaneous measurements of spectral aerosol optical depths (AODs) were made at different regions over the adjoining Indian landmass. Mean AODs (at 500-nm wavelength) over the ocean (∼0.44) were comparable to those over the coastal land (∼0.47), but were lower than the values observed over the plateau regions of central Indian Peninsula (∼0.61). The aerosol properties were found to respond distinctly with respect to change in the trajectories, with higher optical depths and flatter AOD spectra associated with trajectories indicating advection from west Asia, and northwest and west-coastal India. On average, BC constituted only ∼2.2% to total aerosol mass compared to the climatological values of ∼6% over the coastal land during the same season.

These data are used to characterize the physical properties of aerosols and to assess the resulting short-wave direct aerosol forcing. The mean values were –27 W m−2 at the surface and −12 W m−2 at the top of the atmosphere (TOA), resulting in a net atmospheric forcing of +15 W m−2. The forcing also depended on the region from where the advection predominates. The surface and atmospheric forcing were in the range −40 to −57 W m−2 and +27 to +39 W m−2, respectively, corresponding to advection from the west Asian and western coastal India where they were as low as −19 and +10 W m−2, respectively, when the advection was mainly from the Bay of Bengal and from central/peninsular India. In all these cases, the net atmospheric forcing (heating) efficiency was lower than the values reported for northern Indian Ocean during northern winter, which is attributed to the reduced BC mass fraction.

Corresponding author address: K. Krishna Moorthy, Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum 695 022, India. Email: k-k-moorthy@eth.net

Save
  • Andreae, M. O., 1995: Climatic effects of changing atmospheric aerosol levels. World Survey of Climatology, A. Henderson-Sellers, Ed., Future Climates of the World, Vol. 16, Elsevier, 341–392.

    • Search Google Scholar
    • Export Citation
  • Ångström, A., 1964: The parameters of atmospheric turbidity. Tellus, 16 , 6475.

  • Asnani, G. C., 1993: Tropical Meteorology. Vols. 1 and 2. Indian Institute of Tropical Meteorology, 1202 pp.

  • Babu, S. S., and K. K. Moorthy, 2002: Aerosol black carbon over a tropical coastal station in India. Geophys. Res. Lett., 29 .2098, doi: 10.1029/2002GL015662.

    • Search Google Scholar
    • Export Citation
  • Babu, S. S., S. K. Satheesh, and K. K. Moorthy, 2002: Aerosol radiative forcing due to enhanced black carbon at an urban site in India. Geophys. Res. Lett., 29 .1880, doi: 10.1029/2002GL015826.

    • Search Google Scholar
    • Export Citation
  • Babu, S. S., K. K. Moorthy, and S. K. Satheesh, 2004: Aerosol black carbon over Arabian Sea during intermonsoon and summer monsoon seasons. Geophys. Res. Lett., 31 .L06104, doi: 10.1029/2003GL018716.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 1998: Intercomparison of models representing direct shortwave radiative forcing by sulfate aerosols. J. Geophys. Res., 103 , 1697916998.

    • Search Google Scholar
    • Export Citation
  • Capaldo, K., J. J. Corbett, P. Kasibhatala, P. Fischbeck, and S. N. Pandis, 1999: Effects of ship emissions on sulphur cycling and radiative climate forcing over the ocean. Nature, 400 , 743746.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hoffman, 1992: Climate forcing by anthropogenic aerosols. Science, 255 , 423430.

    • Search Google Scholar
    • Export Citation
  • Chuang, C. C., J. E. Penner, K. E. Taylor, A. S. Grossman, and J. J. Walton, 1997: An assessment of the radiative effects of anthropogenic sulphate. J. Geophys. Res., 102 , 37613778.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and G. D. Rolph, 2003: HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model access. [Available online at http://www.arl.noaa/gov/ready/hysplit.html.].

  • Hansen, A. D. A., H. Rosen, and T. Novakov, 1984: Aethalometer—An instrument for the real-time measurement of optical absorption by aerosol particles. Sci. Total Environ., 36 , 191196.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102 , 68316864.

  • Haywood, J. M., and K. P. Shine, 1995: The effect of anthropogenic sulphate and soot on the clear sky planetary radiation budget. Geophys. Res. Lett., 22 , 603606.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and V. Ramaswamy, 1998: Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. J. Geophys. Res., 103 , 60436058.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., V. Ramaswamy, and B. J. Soden, 1999: Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans. Science, 283 , 12991303.

    • Search Google Scholar
    • Export Citation
  • Hess, M., P. Koepke, and I. Schultz, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79 , 831844.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and G. M. McFarquhar, 2001: Microphysics of INDOEX Clean and Polluted Trade Cumulus Clouds. J. Geophys. Res., 106 , D22,. 2865328673.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Husar, R. B., J. M. Prospero, and L. L. Stowe, 1997: Characterisation of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product. J. Geophys. Res., 102 , 1688916909.

    • Search Google Scholar
    • Export Citation
  • Ichoku, C., and Coauthors, 2002: Analysis of the performance characteristics of the five-channel Microtops II Sun photometer for measuring aerosol optical thickness and precipitable water vapor. J. Geophys. Res., 107 .4179, doi: 10.1029/2001JD001302.

    • Search Google Scholar
    • Export Citation
  • Im, J. S., V. K. Saxena, and B. N. Wenny, 2001: An assessment of hygroscopic growth factors for aerosols in the surface boundary layer for computing direct radiative forcing. J. Geophys. Res., 106 , 2021320224.

    • Search Google Scholar
    • Export Citation
  • Jayaraman, A., S. K. Satheesh, A. P. Mitra, and V. Ramanathan, 2001: Latitude gradient in aerosol properties across the Inter-Tropical Convergence Zone: Results from the joint Indo- U.S. study onboard Sagar Kanya. Curr. Sci., 80 , 128137.

    • Search Google Scholar
    • Export Citation
  • Jha, B., and T. N. Krishnamurti, 1999: Real time meteorological atlas during the INDOEX-199. FSU Rep. 98-09, Florida State University, Tallahassee, FL.

  • Kamra, A. K., P. Murugavel, S. D. Pawar, and V. Gopalakrishnan, 2001: Background aerosol concentration derived from the atmospheric electric conductivity measurements made over the Indian ocean during INDOEX. J. Geophys. Res., 106 , 2864328651.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., B. N. Holben, D. Tanre, I. Slutsker, A. Smirnov, and T. F. Eck, 2000: Will aerosol measurements from Terra and Aqua polar orbiting satellites represent the daily aerosol abundance and properties? Geophys. Res. Lett., 27 , 38613864.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and B. P. Briegleb, 1993: The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science, 260 , 311314.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., B. Jha, J. M. Prospero, A. Jayaraman, and V. Ramanathan, 1998: Aerosol and pollutant transport and their impact on radiative forcing over the tropical Indian Ocean during the January–February 1996 pre-INDOEX cruise. Tellus, 50B , 521542.

    • Search Google Scholar
    • Export Citation
  • Li, F., and V. Ramanathan, 2002: Winter to summer monsoon variation of aerosol optical depth over the tropical Indian Ocean. J. Geophys. Res., 107 .4284, doi: 10.1029/2001JD000949.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 2002: An Introduction to Atmospheric Radiation. Academic Press, 583 pp.

  • Lubin, D., S. K. Satheesh, G. McFarquar, and A. J. Heymsfield, 2002: Longwave radiative forcing of Indian Ocean tropospheric aerosol. J. Geophys. Res., 107 .8004, doi: 10.1029/2001JD001183.

    • Search Google Scholar
    • Export Citation
  • Manghnani, V., S. Raman, D. S. Niyogi, V. Parameswara, J. M. Morrison, S. V. Ramana, and J. V. Raju, 2000: Marine boundary-layer variability over the Indian Ocean during INDOEX (1998). Bound.-Layer Meteor., 97 , 411430.

    • Search Google Scholar
    • Export Citation
  • Markowicz, K. M., and Coauthors, 2003: Influence of relative humidity on aerosol radiative forcing: An ACE-Asia experiment perspective. J. Geophys. Res., 108 .8662, doi: 10.1029/2002JD003066.

    • Search Google Scholar
    • Export Citation
  • Moorthy, K. K., and A. Saha, 2000: Aerosol study during INDOEX: Observation of enhanced aerosol activity over the Mid Arabian Sea during the northern winter. J. Atmos. Sol. Terr. Phys., 62 , 6572.

    • Search Google Scholar
    • Export Citation
  • Moorthy, K. K., and S. K. Satheesh, 2000: Characteristics of aerosols over a remote island, Minicoy in the Arabian Sea: Optical properties and retrieved size characteristics. Quart. J. Roy. Meteor. Soc., 126 , 81109.

    • Search Google Scholar
    • Export Citation
  • Moorthy, K. K., S. K. Satheesh, and B. V. K. Murthy, 1997: Investigations of marine aerosols over the tropical Indian Ocean. J. Geophys. Res., 102 , 1882718842.

    • Search Google Scholar
    • Export Citation
  • Moorthy, K. K., A. Saha, B. S. N. Prasad, K. Niranjan, D. Jhurry, and P. S. Pillai, 2001: Aerosol optical depths over peninsular India and adjoining oceans during the INDOEX campaigns: Spatial, temporal, and spectral characteristics. J. Geophys. Res., 106 , D22,. 2853928554.

    • Search Google Scholar
    • Export Citation
  • Moorthy, K. K., S. S. Babu, and S. K. Satheesh, 2003: Aerosol spectral optical depths over the Bay of Bengal: Role of transport. Geophys. Res. Lett., 30 .1249, doi: 10.1029/2002GL016520.

    • Search Google Scholar
    • Export Citation
  • Morys, M., F. M. Mims III, S. Hagerup, S. E. Anderson, A. Baker, J. Kia, and T. Walkup, 2001: Design, calibration and performance of Microtops II handheld ozone monitor and Sun photometer. J. Geophys. Res., 106 , 1457314582.

    • Search Google Scholar
    • Export Citation
  • Neusüß, C., T. Gnauk, A. Plewka, and H. Herrmann, 2002: Carbonaceous aerosol over the Indian Ocean: OC/EC fractions and selected specifications from size-segregated onboard samples. J. Geophys. Res., 107 .D19,. 8031, doi: 10.1029/2001JD000327.

    • Search Google Scholar
    • Export Citation
  • Pillai, P. S., and K. K. Moorthy, 2001: Aerosol mass-size distributions at a tropical coastal environment: Response to mesoscale and synoptic processes. Atmos. Environ., 35 , 40994112.

    • Search Google Scholar
    • Export Citation
  • Pilnis, C., S. N. Pandis, and J. H. Seinfield, 1995: Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size composition. J. Geophys. Res., 100 , 1873918754.

    • Search Google Scholar
    • Export Citation
  • Podgorny, I. A., W. C. Conant, V. Ramanathan, and S. K. Satheesh, 2000: Aerosol modulation of atmospheric and surface solar heating over the tropical Indian Ocean. Tellus, 52B , 947958.

    • Search Google Scholar
    • Export Citation
  • Posfai, M., J. R. Anderson, P. R. Buseck, and H. Sievering, 1999: Soot and sulfate aerosol particles in the remote marine troposphere. J. Geophys. Res., 104 , 2168521693.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., 1979: Mineral and sea salt aerosol concentrations in various ocean regions. J. Geophys. Res., 84 , 725731.

  • Prospero, J. M., R. J. Charlson, B. Mohnen, R. Jaenicke, A. C. Delany, J. Mayers, W. Zoller, and K. Rahn, 1983: The atmospheric aerosol system—An overview. Rev. Geophys., 21 , 16071629.

    • Search Google Scholar
    • Export Citation
  • Ramachandran, S., and A. Jayaraman, 2002: Premonsoon aerosol mass loadings and size distributions over the Arabian Sea and the tropical Indian Ocean. J. Geophys. Res., 107 .4738, doi: 10.1029/2002JD002386.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and Coauthors, 2001: Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res., 106 , 2837128398.

    • Search Google Scholar
    • Export Citation
  • Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle, 1998: SBDART: A research and teaching software tool for plane-parallel radiative transfer in the earth’s atmosphere. Bull. Amer. Meteor. Soc., 79 , 21012114.

    • Search Google Scholar
    • Export Citation
  • Russell, P. B., and Coauthors, 2002: Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments. J. Atmos. Sci., 59 , 609619.

    • Search Google Scholar
    • Export Citation
  • Sakerin, S. M., and D. M. Kabanov, 2002: Spatial inhomogeneities and the spectral behavior of atmospheric aerosol optical depth over the Atlantic Ocean. J. Atmos. Sci., 59 , 484500.

    • Search Google Scholar
    • Export Citation
  • Satheesh, S. K., and K. K. Moorthy, 1997: Aerosol characteristics over coastal regions of the Arabian Sea. Tellus, 49B , 417428.

  • Satheesh, S. K., and V. Ramanathan, 2000: Large differences in the tropical aerosol forcing at the top of the atmosphere and Earth’s surface. Nature, 405 , 6063.

    • Search Google Scholar
    • Export Citation
  • Satheesh, S. K., and J. Srinivasan, 2002: Enhanced aerosol loading over Arabian Sea during the pre-monsoon season: Natural or anthropogenic? Geophys. Res. Lett., 29 .1874, doi: 10.1029/2002GL015687.

    • Search Google Scholar
    • Export Citation
  • Satheesh, S. K., V. Ramanathan, X. Li-Jones, J. M. Lobert, I. A. Podgorny, J. M. Prospero, B. N. G. Holben, and N. G. Loeb, 1999: A model for the natural and anthropogenic aerosols over the Tropical Indian Ocean derived from Indian Ocean Experiment Data. J. Geophys. Res., 104 , D22,. 2742127440.

    • Search Google Scholar
    • Export Citation
  • Satheesh, S. K., K. K. Moorthy, and I. Das, 2001: Aerosol optical depths over Bay of Bengal, Indian Ocean and Arabian Sea. Curr. Sci., 81 , 16171625.

    • Search Google Scholar
    • Export Citation
  • Satheesh, S. K., V. Ramanathan, B. N. Holben, K. K. Moorthy, N. G. Loeb, H. Maring, J. M. Prospero, and D. Savoie, 2002: Chemical, microphysical, and radiative effects of Indian Ocean aerosols. J. Geophys. Res., 107 .4725, doi: 10.1029/2002JD002463.

    • Search Google Scholar
    • Export Citation
  • Smirnov, A., and Coauthors, 2002a: Atmospheric aerosol optical properties in the Persian Gulf. J. Atmos. Sci., 59 , 620634.

  • Smirnov, A., B. N. Holben, T. F. Eck, I. Slutsker, B. Chatenet, and R. T. Pinker, 2002b: Diurnal variability of aerosol optical depth observed at AERONET (Aerosol Robotic Network) sites. Geophys. Res. Lett., 29 .2115, doi: 10.1029/2002GL016305.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S. Tsay, W. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27 , 25022509.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., and J. E. Penner, 1994: Response of the climate system to atmospheric aerosols and green house gases. Nature, 369 , 734737.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: Atmospheric Aerosols. Elsevier, 302 pp.

  • Vinoj, V., and S. K. Satheesh, 2003: Measurements of aerosol optical depth over Arabian Sea during summer monsoon season. Geophys. Res. Lett., 30 ., 1263, doi: 10.1029/2002GL016664.

    • Search Google Scholar
    • Export Citation
  • Vinoj, V., S. S. Babu, S. K. Satheesh, K. K. Moorthy, and Y. J. Kaufman, 2004: Radiative forcing by aerosols over the Bay of Bengal region derived from ship borne, island-based, and satellite (Moderate-Resolution Imaging Spectroradiometer) observations. J. Geophys. Res., 109 .D05203, doi: 10.1029/2003JD004329.

    • Search Google Scholar
    • Export Citation
  • Wang, J., X. Xia, P. Wang, and S. A. Christopher, 2004: Diurnal variability of dust aerosol optical thickness and Ångström exponent over dust source regions in China. Geophys. Res. Lett., 31 .L08107, doi: 10.1029/2004GL019580.

    • Search Google Scholar
    • Export Citation
  • Xu, J., M. H. Bergin, R. Greenwald, and P. B. Russell, 2003: Direct aerosol radiative forcing in the Yangtze delta region of China: Observation and model estimation. J. Geophys. Res., 108 , 4060. , doi: 10:1029/2002JD002550.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 427 143 10
PDF Downloads 292 92 7