• Ackerman, T. P., , and G. Stokes, 2003: The Atmospheric Radiation Measurement Program. Physics Today, 56 , 3845.

  • Baum, B. A., , and B. A. Wielicki, 1994: Cirrus cloud retrieval using infrared sounding data: Multilevel cloud errors. J. Appl. Meteor., 33 , 107117.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., , and J. D. Spinhirne, 2000: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. 3. Cloud overlap. J. Geophys. Res., 105 , 1179311804.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., and Coauthors, 1995: Satellite remote sensing of multiple cloud layers. J. Atmos. Sci., 52 , 42104230.

  • Baum, B. A., , V. Tovinkere, , J. Titlow, , and R. M. Welch, 1997: Automated cloud classification of global AVHRR data using a fuzzy logic approach. J. Appl. Meteor., 36 , 15191540.

    • Search Google Scholar
    • Export Citation
  • Berk, A., and Coauthors, 1999: MODTRAN4 v. 2.0 User’s Manual. Air Force Geophysics Laboratory Tech. Rep. AFGL-TR-89-0122, 98 pp. [Available from Air Force Materiel Command, Hanscom Air Force Base, MA 01731.].

  • Chahine, M. T., 1974: Remote sounding of cloudy atmospheres. I. The single cloud layer. J. Atmos. Sci., 31 , 233243.

  • Chang, F-L., , and Z. Li, 2002: Estimating the vertical variation of cloud droplet effective radius using multispectral near-infrared satellite measurements. J. Geophys. Res., 107 .4257, doi:10.1029/2001JD000766.

    • Search Google Scholar
    • Export Citation
  • Chang, F-L., , and Z. Li, 2005: A near-global climatology of single-layer and overlapped clouds and their optical properties retrieved from Terra/MODIS data using a new algorithm. J. Climate, in press.

  • Clothiaux, E. E., , T. P. Ackerman, , G. G. Mace, , K. P. Moran, , R. T. Marchand, , M. Miller, , and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39 , 645665.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., , and K. Sassen, 2001: Retrieval of cirrus cloud radiative and backscattering properties using combined lidar and infrared radiometer (LIRAD) measurements. J. Oceanic Atmos. Technol., 18 , 16581673.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., , and C. Jakob, 2004: Evaluation of tropical cirrus cloud properties derived from ECMWF model output and ground based measurements over Nauru Island. Geophys. Res. Lett., 31 .L10106, doi:10.1029/2004GL019539.

    • Search Google Scholar
    • Export Citation
  • Descloitres, J. C., , J. C. Buriez, , F. Parol, , and Y. Fouquart, 1998: POLDER observations of cloud bidirectional reflectances compared to a plane-parallel model using the International Satellite Cloud Climatology Project cloud phase functions. J. Geophys. Res., 103 , 1141111418.

    • Search Google Scholar
    • Export Citation
  • Francis, P. N., 1995: Some aircraft observations of the scattering properties of ice crystals. J. Atmos. Sci., 52 , 11421154.

  • Gonzalez, A., , P. Wendling, , B. Mayer, , J-F. Gayet, , and T. Rother, 2002: Remote sensing of cirrus cloud properties in the presence of lower clouds: An ATSR-2 case study during the interhemispheric differences in cirrus properties from anthropogenic emissions experiment. J. Geophys. Res., 107 .4693, doi:10.1029/2002JD002535.

    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., and Coauthors, 1982: Atlas of simultaneous occurrence of different cloud types over the ocean. NCAR Tech. Note TN241 + STR, 209 pp. [Available from National Center for Atmospheric Research, Boulder, CO 80307.].

  • Hahn, C. J., and Coauthors, 1984: Atlas of simultaneous occurrence of different cloud types over land. NCAR Tech. Note TN-241 + STR, 216 pp. [Available from National Center for Atmospheric Research, Boulder, CO 80307.].

  • Hale, G. M., , and M. R. Querry, 1973: Optical constants of water in the 200 nm to 200 mm wavelength region. Appl. Opt., 12 , 555563.

  • Ho, S-P., , B. Lin, , P. Minnis, , and T-F. Fan, 2003: Estimates of cloud vertical structure and water amount over tropical oceans using VIRS and TMI data. J. Geophys. Res., 108 .4419, doi:10.1029/2002JD003298.

    • Search Google Scholar
    • Export Citation
  • Jin, Y., , W. B. Rossow, , and D. P. Wylie, 1996: Comparison of the climatologies of high-level clouds from HIRS and ISCCP. J. Climate, 9 , 28502879.

    • Search Google Scholar
    • Export Citation
  • King, M. D., and Coauthors, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS. IEEE Trans. Geosci. Remote Sens., 41 , 442458.

    • Search Google Scholar
    • Export Citation
  • Lin, B., , P. Minnis, , B. Wielicki, , D. R. Doelling, , R. Palikonda, , D. F. Young, , and T. Uttal, 1998: Estimation of water cloud properties from satellite microwave, infrared and visible measurements in oceanic environment: 2. Results. J. Geophys. Res., 103 , 38873905.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114 , 11671199.

  • Mace, G. G., , E. E. Clothiaux, , and T. A. Ackerman, 2001: The composite characteristics of cirrus clouds: Bulk properties revealed by one year of continuous cloud radar data. J. Climate, 14 , 21852203.

    • Search Google Scholar
    • Export Citation
  • Macke, A., 1993: Scattering of light by polyhedral ice crystals. Appl. Opt., 32 , 27802788.

  • Menzel, W. P., , D. P. Wylie, , and K. I. Strabala, 1992: Seasonal and diurnal changes in cirrus clouds as seen in four years of observations with the VAS. J. Appl. Meteor., 31 , 370385.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., , B. A. Baum, , K. I. Strabala, , and R. A. Frey, 2002: Cloud top properties and cloud phase algorithm theoretical basis document: ATBD-MOD-04. 61 pp. [Available online at http://modis-atmos.gsfc.nasa.gov/_docs/atbd_mod04.pdf.].

  • Minnis, P., , D. F. Young, , K. Sassen, , J. M. Alvarez, , and C. J. Grund, 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Cirrus parameter relationships derived from satellite and lidar data. Mon. Wea. Rev., 118 , 24022425.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., , K-N. Liou, , and Y. Takano, 1993a: Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. Part I: Parameterization of radiance field. J. Atmos. Sci., 50 , 12791304.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., , P. W. Heck, , and D. F. Young, 1993b: Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. Part II: Verification of theoretical cirrus radiative properties. J. Atmos. Sci., 50 , 13051322.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. L., , W. B. Rossow, , A. Macke, , and A. A. Lacis, 1996: Sensitivity of cirrus cloud albedo, bidirectional reflectance, and optical thickness retrieval accuracy to ice-particle shape. J. Geophys. Res., 101 , 1697316985.

    • Search Google Scholar
    • Export Citation
  • Ou, S. C., , K. N. Liou, , and B. A. Baum, 1996: Detection of multilayer cirrus cloud systems using AVHRR data: Verification based on FIRE-II IFO composite measurements. J. Appl. Meteor., 35 , 178191.

    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., , and A. K. Heidinger, 2004: Daytime cloud overlap detection from AVHRR and VIIRS. J. Appl. Meteor., 43 , 762778.

  • Platnick, S., , M. D. King, , S. A. Ackerman, , W. P. Menzel, , B. A. Baum, , J. C. Riedi, , and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459473.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., , and G. L. Stephens, 1980: The interpretation of remotely sensed high cloud emittances. J. Atmos. Sci., 37 , 23142322.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72 , 220.

  • Rossow, W. B., , and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612287.

  • Rossow, W. B., , L. C. Garder, , and A. A. Lacis, 1989: Global, seasonal cloud variations from satellite radiance measurements. Part I: Sensitivity of analysis. J. Climate, 2 , 419462.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., , Z. Wang, , C. M. R. Platt, , and J. M. Comstock, 2003: Parameterization of infrared absorption in midlatitude cirrus clouds. J. Atmos. Sci., 60 , 428433.

    • Search Google Scholar
    • Export Citation
  • Sheu, R-S., , J. A. Curry, , and G. Liu, 1997: Vertical stratification of tropical cloud properties as determined from satellite. J. Geophys. Res., 102 , 42314245.

    • Search Google Scholar
    • Export Citation
  • Smith, W. L., , and C. M. R. Platt, 1978: Comparison of satellite-deduced cloud heights with indications from radiosonde and ground-based laser measurements. J. Appl. Meteor., 17 , 17961802.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CLOUDSAT mission and the A-Train. Bull. Amer. Meteor. Soc., 83 , 17711790.

  • Tian, L., , and J. A. Curry, 1989: Cloud overlap statistics. J. Geophys. Res., 94 , 99259935.

  • Wang, J., , W. B. Rossow, , and Y-C. Zhang, 2000: Cloud vertical structure and its variations from a 20-year global rawinsonde dataset. J. Climate, 13 , 30413056.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., 1984: Optical constants of ice from ultraviolet to the microwave. Appl. Opt., 23 , 12061225.

  • Warren, S. G., , C. J. Hahn, , and J. London, 1985: Simultaneous occurrence of different cloud types. J. Climate Appl. Meteor., 24 , 658667.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., , and J. A. Coakley Jr., 1981: Cloud retrieval using infrared sounder data: Error analysis. J. Appl. Meteor., 20 , 157169.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., , and W. P. Menzel, 1989: Two years of cloud cover statistics using VAS. J. Climate, 2 , 380392.

  • Wylie, D. P., , and W. P. Menzel, 1999: Eight years of high cloud statistics using HIRS. J. Climate, 12 , 170184.

  • Wylie, D. P., , W. P. Menzel, , H. M. Woolf, , and K. I. Strabala, 1994: Four years of global cirrus cloud statistics using HIRS. J. Climate, 7 , 19721986.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., 1998: The 600–800-mb minimum in tropical cloudiness observed during TOGA COARE. J. Atmos. Sci., 55 , 22202228.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 48 48 3
PDF Downloads 49 49 3

A New Method for Detection of Cirrus Overlapping Water Clouds and Determination of Their Optical Properties

View More View Less
  • 1 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 2 Earth System Science Interdisciplinary Center, and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The frequent occurrence of high cirrus overlapping low water cloud poses a major challenge in retrieving their optical properties from spaceborne sensors. This paper presents a novel retrieval method that takes full advantage of the satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The main objectives are identification of overlapped high cirrus and low water clouds and determination of their individual optical depths, top heights, and emissivities. The overlapped high cloud top is determined from the MODIS CO2-slicing retrieval and the underlying low cloud top is determined from the neighboring MODIS pixels that are identified as single-layer low clouds. The algorithm applies a dual-layer cloud radiative transfer model using initial cloud properties derived from the MODIS CO2-slicing channels and the visible (0.65 μm) and infrared (11 μm) window channels. An automated iterative procedure follows by adjusting the high cirrus and low water cloud optical depths until computed radiances from the dual-layer model match with observed radiances from both the visible and infrared channels. The algorithm is valid for both single-layer and dual-layer clouds with the cirrus optical depth <∼4 (emissivity <∼0.85). For more than two-layer clouds, its validity depends on the thickness of the upper-layer cloud. A preliminary validation is conducted by comparing against ground-based active remote sensing data. Pixel-by-pixel retrievals and error analyses are presented. It is demonstrated that retrievals based on a single-layer assumption can result in systematic biases in the retrieved cloud top and optical properties for overlapped clouds. Such biases can be removed or lessened considerably by applying the new algorithm.

Corresponding author address: Dr. Fu-Lung Chang, Earth System Science Interdisciplinary Center, 2207 Computer and Space Sciences Bldg., University of Maryland, College Park, College Park, MD 20742-2465. Email: fchang@essic.umd.edu

Abstract

The frequent occurrence of high cirrus overlapping low water cloud poses a major challenge in retrieving their optical properties from spaceborne sensors. This paper presents a novel retrieval method that takes full advantage of the satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The main objectives are identification of overlapped high cirrus and low water clouds and determination of their individual optical depths, top heights, and emissivities. The overlapped high cloud top is determined from the MODIS CO2-slicing retrieval and the underlying low cloud top is determined from the neighboring MODIS pixels that are identified as single-layer low clouds. The algorithm applies a dual-layer cloud radiative transfer model using initial cloud properties derived from the MODIS CO2-slicing channels and the visible (0.65 μm) and infrared (11 μm) window channels. An automated iterative procedure follows by adjusting the high cirrus and low water cloud optical depths until computed radiances from the dual-layer model match with observed radiances from both the visible and infrared channels. The algorithm is valid for both single-layer and dual-layer clouds with the cirrus optical depth <∼4 (emissivity <∼0.85). For more than two-layer clouds, its validity depends on the thickness of the upper-layer cloud. A preliminary validation is conducted by comparing against ground-based active remote sensing data. Pixel-by-pixel retrievals and error analyses are presented. It is demonstrated that retrievals based on a single-layer assumption can result in systematic biases in the retrieved cloud top and optical properties for overlapped clouds. Such biases can be removed or lessened considerably by applying the new algorithm.

Corresponding author address: Dr. Fu-Lung Chang, Earth System Science Interdisciplinary Center, 2207 Computer and Space Sciences Bldg., University of Maryland, College Park, College Park, MD 20742-2465. Email: fchang@essic.umd.edu

Save