• Babiano, A., , C. Basdevant, , and R. Sadourny, 1985: Structure function and dispersion laws in two-dimensional turbulence. J. Atmos. Sci., 42 , 942949.

    • Search Google Scholar
    • Export Citation
  • Babiano, A., , C. Basdevant, , P. Le Roy, , and R. Sadourny, 1990: Relative dispersion in two-dimensional turbulence. J. Fluid Mech., 214 , 535557.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., , S. D. Eckermann, , P. A. Newman, , L. Lait, , K. R. Chan, , M. Loewenstein, , M. H. Proffitt, , and B. L. Gary, 1996: Stratospheric horizontal wavenumber spectra of winds, potential temperature, and atmospheric tracers observed by high-altitude aircraft. J. Geophys. Res., 101 , 94419470.

    • Search Google Scholar
    • Export Citation
  • Basdevant, C., , and T. Philipovitch, 1994: On the validity of the “Weiss criterion” in two-dimensional turbulence. Physica D, 73 , 1730.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1949: Diffusion in a field of homogeneous turbulence I. Eulerian analysis. Aust. J. Sci. Res., 2 , 437450.

  • Batchelor, G. K., 1951: Diffusion in a field of homogeneous turbulence II. The relative motion of particles. Proc. Camb. Philos. Soc., 48 , 345362.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., 1984: Relative dispersion: Local and nonlocal dynamics. J. Atmos. Sci., 41 , 18811886.

  • Charney, J. G., , and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66 , 83109.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41 .1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Haller, G., 2000: Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos, 10 , 99108.

  • Hua, B. L., , and P. Klein, 1998: An exact criterion for the stirring properties of nearly two-dimensional turbulence. Physica D, 113 , 98110.

    • Search Google Scholar
    • Export Citation
  • Joseph, B., , and B. Legras, 2002: Relation between kinematic boundaries, stirring and barriers for the Antarctic polar vortex. J. Atmos. Sci., 59 , 11981212.

    • Search Google Scholar
    • Export Citation
  • Juckes, M. N., , and M. E. McIntyre, 1987: A high resolution, one-layer model of breaking planetary waves in the stratosphere. Nature, 328 , 590596.

    • Search Google Scholar
    • Export Citation
  • Koshyk, J., , B. Boville, , K. Hamilton, , E. Manzini, , and K. Shibata, 1999: Kinetic energy spectrum of horizontal motions in middle-atmosphere models. J. Geophys. Res., 104 , 177189.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., , and K. G. Speer, 1999: Lagrangian statistics in unforced barotropic flows. J. Mar. Res., 57 , 245274.

  • Lapeyre, G., , B. L. Hua, , and B. Legras, 2001: Comment on “Finding finite-time invariant manifolds in two-dimensional velocity fields.”. Chaos, 11 , 427430.

    • Search Google Scholar
    • Export Citation
  • Louazel, S., , and B. L. Hua, 2004: Vortex erosion in a shallow-water model. Phys. Fluids, 8 , 30793085.

  • Majda, A. J., , and P. R. Kramer, 1999: Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena. Phys. Rep., 314 , 238574.

    • Search Google Scholar
    • Export Citation
  • Malhotra, N., , I. Mezić, , and S. Wiggins, 1998: Patchiness: A new diagnostic for Lagrangian trajectory analysis in time-dependent fluid flow. Int. J. Bifurcation Chaos, 8 , 10531093.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M., , and T. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305 , 593600.

  • Ngan, K., , and T. G. Shepherd, 1999a: A closer look at chaotic advection in the stratosphere. Part I: Geometric structure. J. Atmos. Sci., 56 , 41344152.

    • Search Google Scholar
    • Export Citation
  • Ngan, K., , and T. G. Shepherd, 1999b: A closer look at chaotic advection in the stratosphere. Part II: Statistical diagnostics. J. Atmos. Sci., 56 , 41534166.

    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1970: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res., 17 , 445454.

    • Search Google Scholar
    • Export Citation
  • Pasmanter, R., 1988: Anomalous diffusion and anomalous stretching in vortical flows. Fluid. Dyn. Res., 3 , 320326.

  • Pierrehumbert, R. T., 1991: Large-scale horizontal mixing in planetary atmospheres. Phys. Fluids A, 3 , 12501260.

  • Polvani, L. M., , and R. A. Plumb, 1992: Rossby wave breaking, microbreaking, filamentation and secondary vortex formation: The dynamics of a perturbed vortex. J. Atmos. Sci., 49 , 462476.

    • Search Google Scholar
    • Export Citation
  • Provenzale, A., 1999: Transport by coherent barotropic vortices. Annu. Rev. Fluid Mech., 31 , 5593.

  • Richardson, L. F., 1926: Atmospheric diffusion shown on a distance-neighbour graph. Proc. Roy. Soc. London, A110 , 709737.

  • Salmon, R., 1998: Lectures on Geophysical Fluid Dynamics. Oxford University Press, 378 pp.

  • Samelson, R., 1992: Fluid exchange across a meandering jet. J. Phys. Oceanogr., 22 , 431440.

  • Seo, H. K., , and K. P. Bowman, 2000: Levy flights and anomalous diffusion in the stratosphere. J. Geophys. Res., 105 , 1229512302.

  • Shepherd, T. G., 2000: The middle atmosphere. J. Atmos. Solar-Terr. Phys., 62 , 15871601.

  • Shepherd, T. G., , J. N. Koshyk, , and K. Ngan, 2000: On the nature of large-scale mixing in the stratosphere and mesosphere. J. Geophys. Res., 105 , 1243312446.

    • Search Google Scholar
    • Export Citation
  • Sparling, L. C., , and J. T. Bacmeister, 2001: Scale dependence of tracer microstructure: PDFs, intermittency and the dissipation scale. Geophys. Res. Lett., 28 , 28232826.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1921: Diffusion by continuous movement. Proc. London Math. Soc., 20 , 196212.

  • Taylor, G. I., 1953: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. London, A219 , 186203.

  • Weeks, E. R., , J. S. Urbach, , and H. L. Swinney, 1996: Anomalous diffusion in asymmetric random walks with a quasigeostrophic flow example. Physica D, 97 , 291310.

    • Search Google Scholar
    • Export Citation
  • Weiss, J., 1991: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48 , 273294.

  • Zouari, N., , and A. Babiano, 1994: Derivation of the relative dispersion law in the inverse energy cascade of 2-dimensional turbulence. Physica D, 76 , 318328.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 57 57 5
PDF Downloads 36 36 2

Stirring and Mixing in Two-Dimensional Divergent Flow

View More View Less
  • 1 Department of Physics, University of Toronto, Toronto, Ontario, Canada
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

While stirring and mixing properties in the stratosphere are reasonably well understood in the context of balanced (slow) dynamics, as is evidenced in numerous studies of chaotic advection, the strongly enhanced presence of high-frequency gravity waves in the mesosphere gives rise to a significant unbalanced (fast) component to the flow. The present investigation analyses result from two idealized shallow-water numerical simulations representative of stratospheric and mesospheric dynamics on a quasi-horizontal isentropic surface. A generalization of the Hua–Klein Eulerian diagnostic to divergent flow reveals that velocity gradients are strongly influenced by the unbalanced component of the flow. The Lagrangian diagnostic of patchiness nevertheless demonstrates the persistence of coherent features in the zonal component of the flow, in contrast to the destruction of coherent features in the meridional component. Single-particle statistics demonstrate t2 scaling for both the stratospheric and mesospheric regimes in the case of zonal dispersion, and distinctive scaling laws for the two regimes in the case of meridional dispersion. This is in contrast to two-particle statistics, which in the mesospheric (unbalanced) regime demonstrate a more rapid approach to Richardson’s t3 law in the case of zonal dispersion and is evidence of enhanced meridional dispersion.

* Current affiliation: Centre for Earth Observation Science (CEOS), University of Manitoba, Winnipeg, Manitoba, Canada

Corresponding author address: Dr. T. G. Shepherd, Dept. of Physics, University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7, Canada. Email: tgs@atmosp.physics.utoronto.ca

Abstract

While stirring and mixing properties in the stratosphere are reasonably well understood in the context of balanced (slow) dynamics, as is evidenced in numerous studies of chaotic advection, the strongly enhanced presence of high-frequency gravity waves in the mesosphere gives rise to a significant unbalanced (fast) component to the flow. The present investigation analyses result from two idealized shallow-water numerical simulations representative of stratospheric and mesospheric dynamics on a quasi-horizontal isentropic surface. A generalization of the Hua–Klein Eulerian diagnostic to divergent flow reveals that velocity gradients are strongly influenced by the unbalanced component of the flow. The Lagrangian diagnostic of patchiness nevertheless demonstrates the persistence of coherent features in the zonal component of the flow, in contrast to the destruction of coherent features in the meridional component. Single-particle statistics demonstrate t2 scaling for both the stratospheric and mesospheric regimes in the case of zonal dispersion, and distinctive scaling laws for the two regimes in the case of meridional dispersion. This is in contrast to two-particle statistics, which in the mesospheric (unbalanced) regime demonstrate a more rapid approach to Richardson’s t3 law in the case of zonal dispersion and is evidence of enhanced meridional dispersion.

* Current affiliation: Centre for Earth Observation Science (CEOS), University of Manitoba, Winnipeg, Manitoba, Canada

Corresponding author address: Dr. T. G. Shepherd, Dept. of Physics, University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7, Canada. Email: tgs@atmosp.physics.utoronto.ca

Save