• Abdul-Razzak, H., , and S. J. Ghan, 2000: A parameterization of aerosol activation. 2. Multiple aerosol types. J. Geophys. Res., 105 , 68376844.

    • Search Google Scholar
    • Export Citation
  • Abdul-Razzak, H., , S. J. Ghan, , and C. Rivera-Carpio, 1998: A parameterization of aerosol activation. 1. Single aerosol type. J. Geophys. Res., 103 , 61236131.

    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., , O. B. Toon, , D. E. Stevens, , and J. A. Coakley, 2003: Enhancement of cloud cover and suppression of nocturnal drizzle in stratocumulus polluted by haze. Geophys. Res. Lett., 30 .1381, doi:10.1029/2002GL016634.

    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., , M. P. Kirkpatrick, , D. E. Stevens, , and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432 , 10141017.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245 , 12271230.

  • Albrecht, B. A., , C. S. Bretherton, , D. Johnson, , W. H. Scubert, , and A. S. Frisch, 1995: The Atlantic Stratocumulus Transition Experiment—ASTEX. Bull. Amer. Meteor. Soc., 76 , 889904.

    • Search Google Scholar
    • Export Citation
  • Andreae, M., , D. Rosenfeld, , P. Artaxo, , A. Costa, , G. Frank, , K. Longo, , and M. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303 , 13371342.

    • Search Google Scholar
    • Export Citation
  • Betts, A., , and R. Boers, 1990: A cloudiness transition in a marine boundary layer. J. Atmos. Sci., 47 , 14801497.

  • Bohren, C. F., 1980: Multiple scattering of light and some of its observable consequences. Amer. J. Phys., 55 , 524533.

  • Brenguier, J-L., , H. Pawloska, , L. Schüller, , R. Preusker, , and J. Fischer, 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57 , 807821.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J-L., , H. Pawlowska, , and L. Schüller, 2003: Cloud microphysical and radiative properties for parameterization and satellite monitoring of the indirect effect of aerosols on climate. J. Geophys. Res., 108 .8632, doi:10.1029/2002JD002682.

    • Search Google Scholar
    • Export Citation
  • Bréon, F-M., , D. Tanré, , and S. Generoso, 2002: Aerosol effect on cloud droplet size monitored from satellite. Science, 295 , 834838.

  • Chen, C., , and W. R. Cotton, 1983: A one-dimensional simulation of the stratocumulus-capped mixed layer. Bound.-Layer Meteor., 25 , 289321.

    • Search Google Scholar
    • Export Citation
  • Chlond, A., , and A. Wolkau, 2000: Large-eddy simulation of a nocturnal stratocumulus-topped marine atmospheric boundary layer: An uncertainty analysis. Bound.-Layer Meteor., 95 , 3155.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., , W. H. Schubert, , and R. H. Johnson, 1999: Large-scale heat and moisture budgets over the ASTEX region. J. Atmos. Sci., 56 , 32413261.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., , W. H. Schubert, , and R. H. Johnson, 2001: Diurnal variability of the marine boundary layer during ASTEX. J. Atmos. Sci., 58 , 23552376.

    • Search Google Scholar
    • Export Citation
  • Coakley, J. A., , J. R. Bernstein, , and P. A. Durkee, 1987: Effect of ship track effluents on cloud reflectivity. Science, 237 , 10201021.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., , R. T. Bruintjes, , and G. K. Mather, 1997: Calculations pertaining to hygroscopic seeding with flares. J. Appl. Meteor., 36 , 14491469.

    • Search Google Scholar
    • Export Citation
  • d’Almeida, G. A., , P. Koepke, , and E. P. Shettle, 1991: Atmospheric Aerosols: Global Climatology and Radiative Characteristics. A. Deepak Publishing, 561 pp.

    • Search Google Scholar
    • Export Citation
  • Dana, M. T., , and J. M. Hales, 1976: Statistical aspects of the washout of polydisperse aerosols. Atmos. Environ., 10 , 4550.

  • Deardorff, J. W., 1970: A numerical study of three-dimensional turbulent channel flow at large Reynolds number. J. Fluid Mech., 41 , 453480.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P. G., and Coauthors, 1999: Intercomparison of three- and one-dimensional model simulations and aircraft observations of stratocumulus. Bound.-Layer Meteor., 92 , 453487.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , and S. Kreidenweis, 2002: Cloud processing of aerosol as modeled by a large eddy simulation with coupled microphysics and aqueous chemistry. J. Geophys. Res., 107 .4687, doi:10.1029/2002JD002054.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , B. Stevens, , W. Cotton, , and R. Walko, 1994: An explicit cloud microphysics/LES model designed to simulate the Twomey effect. Atmos. Res., 33 , 207233.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , S. Kreidenweis, , B. Stevens, , and W. Cotton, 1996: Numerical simulations of stratocumulus processing of cloud condensation nuclei through collision-coalescence. J. Geophys. Res., 101 , 2139121402.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , R. Boers, , B. Stevens, , and W. Cotton, 1997: A modeling study of the effect of drizzle on cloud optical depth and susceptibility. J. Geophys. Res., 102 , 1352713534.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , W. R. Cotton, , S. M. Kreidenweis, , and J. T. Davis, 1999a: The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. J. Atmos. Sci., 56 , 41004117.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , A. S. Frisch, , B. Stevens, , and W. R. Cotton, 1999b: On the relationship among cloud turbulence, droplet formation and drizzle as viewed by Doppler radar, microwave radiometer and lidar. J. Geophys. Res., 104 , 2219522203.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , W. L. Eberhard, , D. E. Veron, , and M. Previdi, 2003: First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys. Res. Lett., 30 .1287, doi:10.1029/2002GL016633.

    • Search Google Scholar
    • Export Citation
  • Ferek, R. J., and Coauthors, 2000: Drizzle suppression in ship tracks. J. Atmos. Sci., 57 , 27072728.

  • Fitzjarrald, D., , and M. Garstang, 1981: Vertical structure of the tropical boundary layer. Mon. Wea. Rev., 109 , 15121526.

  • Ghan, S. J., , L. R. Leung, , R. C. Easter, , and H. Abdul-Razzak, 1997: Prediction of cloud droplet number in a general circulation model. J. Geophys. Res., 102 , 2177721794.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., , G. Guzman, , and H. Abdul-Razzak, 1998: Competition between sea salt and sulfate particles as cloud condensation nuclei. J. Atmos. Sci., 55 , 33403347.

    • Search Google Scholar
    • Export Citation
  • Han, Q., , W. B. Rossow, , J. Chou, , and R. M. Welch, 1998: Global variation of column droplet concentration in low-level clouds. Geophys. Res. Lett., 25 , 14191422.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., , and L. D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16 , 527610.

  • Heymsfield, A., , and G. McFarquhar, 2001: Microphysics of INDOEX clean and polluted trade cumulus clouds. J. Geophys. Res., 106 , 2865328673.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., , T. Ding, , D. J. Griggs, , M. Noguer, , P. J. van der Linden, , X. Dai, , K. Maskell, , and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., , G. Feingold, , W. Cotton, , and P. Duynkerke, 2001: Large-eddy simulations of entrainment of cloud condensation nuclei into the Arctic boundary layer: May 18, 1998, FIRE/SHEBA case study. J. Geophys. Res., 106 , 1511315122.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., , G. Feingold, , and W. Cotton, 2002: Simulations of aerosol-cloud-dynamical feedbacks resulting from entrainment of aerosol into the marine boundary layer during the Atlantic Stratocumulus Transition Experiment. J. Geophys. Res., 107 .4813, doi:10.1029/2001JD001502.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. B., 1982: The role of giant and ultragiant aerosol particles in warm rain initiation. J. Atmos. Sci., 39 , 448460.

  • Kim, B., , S. Schwartz, , M. Miller, , and Q. Min, 2003: Effective radius of cloud droplets by ground-based remote sensing: Relationship to aerosol. J. Geophys. Res., 108 .4740, doi:10.1029/2003JD003721.

    • Search Google Scholar
    • Export Citation
  • Koren, I., , Y. Kaufman, , L. Remer, , and J. Martins, 2004: Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science, 303 , 13421345.

    • Search Google Scholar
    • Export Citation
  • Krueger, S., 1988: Numerical simulation of tropical cumulus clouds and their interaction with the subcloud layer. J. Atmos. Sci., 45 , 22212250.

    • Search Google Scholar
    • Export Citation
  • Krueger, S., , G. Mclean, , and Q. Fu, 1995: Numerical simulation of the stratus-to-cumulus transition in the subtropical marine boundary layer. Part I: Boundary-layer structure. J. Atmos. Sci., 52 , 28392850.

    • Search Google Scholar
    • Export Citation
  • Menon, S., and Coauthors, 2003: Evaluating aerosol/cloud/radiation process parameterizations with single-column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations. J. Geophys. Res., 108 .4762, doi:10.1029/2003JD003902.

    • Search Google Scholar
    • Export Citation
  • Moeng, C., and Coauthors, 1996: Simulation of a stratocumulus-topped planetary boundary layer: Intercomparison among different numerical codes. Bull. Amer. Meteor. Soc., 77 , 261278.

    • Search Google Scholar
    • Export Citation
  • Moeng, C., , P. P. Sullivan, , and B. Stevens, 1999: Including radiative effects in an entrainment rate formula for buoyancy-driven PBLs. J. Atmos. Sci., 56 , 10311049.

    • Search Google Scholar
    • Export Citation
  • Mordy, W., 1959: Computations of the growth by condensation of a population of cloud droplets. Tellus, 11 , 1644.

  • Nenes, A., , and J. Seinfeld, 2003: Parameterization of cloud droplet formation in global climate models. J. Geophys. Res., 108 .4415, doi:10.1029/2002JD002911.

    • Search Google Scholar
    • Export Citation
  • Nenes, A., , R. Charlson, , M. Facchini, , M. Kulmala, , A. Laaksonen, , and J. Seinfeld, 2002: Can chemical effects on cloud droplet number rival the first indirect effect? Geophys. Res. Lett., 29 .1848, doi:10.1029/2002GL015295.

    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., , M. H. Smith, , I. E. Consterdine, , and J. A. Lowe, 1997: Marine aerosol, sea-salt, and the marine sulphur cycle: A short review. Atmos. Environ., 31 , 7380.

    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D., , J. A. Lowe, , M. H. Smith, , and A. D. Kaye, 1999: The relative importance of non-sea-salt sulphate and sea-salt aerosol to the marine cloud condensation nuclei population: An improved multi-component aerosol-cloud droplet parameterization. Quart. J. Roy. Meteor. Soc., 125 , 12951313.

    • Search Google Scholar
    • Export Citation
  • Penner, J., , X. Dong, , and Y. Chen, 2004: Observational evidence of a change in radiative forcing due to the indirect aerosol effect. Nature, 427 , 231234.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys., 49 , 6991.

  • Pincus, R., , and M. B. Baker, 1994: Effect of precipitation on the albedo susceptibility of marine boundary layer clouds. Nature, 372 , 250252.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Randall, D. A., , J. A. Coakley Jr., , C. W. Fairall, , R. A. Kropfli, , and D. H. Lenschow, 1984: Outlook for research on subtropical marine stratiform clouds. Bull. Amer. Meteor. Soc., 65 , 12901301.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26 , 31053108.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287 , 17931796.

  • Rosenfeld, D., , Y. Rudich, , and R. Lahav, 2001: Desert dust suppressing precipitation: A possible desertification feedback loop. Proc. Natl. Acad. Sci. USA, 98 , 59755980.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , R. Lahav, , A. Khain, , and M. Pinsky, 2002: The role of sea spray in cleansing air pollution over ocean via cloud processes. Science, 297 , 16671670.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , J. S. Wakefield, , E. J. Steiner, , and S. K. Cox, 1979a: Marine stratocumulus convection. Part I: Governing equations and horizontally homogeneous solutions. J. Atmos. Sci., 36 , 12861307.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., , J. S. Wakefield, , E. J. Steiner, , and S. K. Cox, 1979b: Marine stratocumulus convection. Part II: Horizontally inhomogeneous solutions. J. Atmos. Sci., 36 , 13081324.

    • Search Google Scholar
    • Export Citation
  • Schwartz, S. E., , and C. M. Benkovitz, and Harshvardhan, 2002: Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements and chemical transport modeling. Proc. Natl. Sci. USA, 99 , 17841789.

    • Search Google Scholar
    • Export Citation
  • Segal, Y., , A. Khain, , M. Pinsky, , and D. Rosenfield, 2004: Effects of hygroscopic seeding on raindrop formation as seen from simulations using a 2000-bin spectral cloud parcel model. Atmos. Res., 71 , 334.

    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., , and S. N. Pandis, 1998: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons, 1326 pp.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1978: Radiation profiles in extended water clouds. Part II: Parameterization schemes. J. Atmos. Sci., 35 , 21232132.

  • Stevens, B., , G. Feingold, , W. Cotton, , and R. Walko, 1996a: Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus. J. Atmos. Sci., 53 , 9801006.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , R. L. Walko, , and W. R. Cotton, 1996b: The spurious production of cloud-edge supersaturations by Eulerian models. Mon. Wea. Rev., 124 , 10341041.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , W. R. Cotton, , G. Feingold, , and C-H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layer. J. Atmos. Sci., 55 , 36163638.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., , and W. R. Cotton, 1981: The use of ice–liquid water potential temperature as a thermodynamic variable in deep atmospheric models. Mon. Wea. Rev., 109 , 10941102.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., , M. D. Petters, , J. R. Snider, , B. Stevens, , W. Tahnk, , M. Wetzel, , L. Russell, , and F. Burnet, 2005: Evaluation of the aerosol indirect effect in marine stratocumulus clouds: droplet number, size, liquid water path and radiative impact. J. Geophys. Res., , in press.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34 , 11491152.

  • Tzivion, S., , G. Feingold, , and Z. Levin, 1987: An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci., 44 , 31393149.

    • Search Google Scholar
    • Export Citation
  • Tzivion, S., , G. Feingold, , and Z. Levin, 1989: The evolution of raindrop spectra. Part II: Collisional collection breakup and evaporation in a rainshaft. J. Atmos. Sci., 46 , 33123327.

    • Search Google Scholar
    • Export Citation
  • Von der Emde, K., , and U. Wacker, 1993: Comments on the relationship between aerosol spectra, equilibrium drop size spectra, and CCN spectra. Beitr. Phys. Atmos., 66 , 157162.

    • Search Google Scholar
    • Export Citation
  • Wakefield, J. S., , and W. H. Schubert, 1981: Mixed-layer mode simulations of eastern North Pacific stratocumulus. Mon. Wea. Rev., 109 , 19521968.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., , W. R. Cotton, , M. P. Meyers, , and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38 , 2962.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., , C. J. Hahn, , J. London, , R. M. Chervine, , and R. L. Jenne, 1986: Global distribution of total cloud cover and cloud type amounts over ocean. NCAR/TN-317+STR, NCAR Tech. Note, 29 pp.

  • Wyant, M. C., , C. S. Bretherton, , H. A. Rand, , and D. E. Stevens, 1997: Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci., 54 , 168192.

    • Search Google Scholar
    • Export Citation
  • Yin, Y., , Z. Levin, , T. G. Reisin, , and S. Tzivion, 2000: The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds—A numerical study. Atmos. Res., 53 , 91116.

    • Search Google Scholar
    • Export Citation
  • Yum, S. S., , and J. G. Hudson, 2002: Maritime/continental microphysical contrasts in stratus. Tellus, 54B , 6173.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 77 77 11
PDF Downloads 36 36 6

Study of the Aerosol Indirect Effect by Large-Eddy Simulation of Marine Stratocumulus

View More View Less
  • 1 California Institute of Technology, Pasadena, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A total of 98 three-dimensional large-eddy simulations (LESs) of marine stratocumulus clouds covering both nighttime and daytime conditions were performed to explore the response of cloud optical depth (τ) to various aerosol number concentrations (Na = 50–2500 cm−3) and the covarying meteorological conditions (large-scale divergence rate and SST). The idealized First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) and the Atlantic Stratocumulus Transition Experiment (ASTEX) Lagrangian 1 sounding profiles were used to represent the lightly and heavily drizzling cases, respectively. The first and second aerosol indirect effects are identified. Through statistical analysis, τ is found be to both positively correlated with Na and cloud liquid water path (LWP) with a higher correlation associated with LWP, which is predominantly regulated by large-scale subsidence and SST. Clouds with high LWP occur under low SST or weak large-scale subsidence. Introduction of a small amount of giant sea salt aerosol into the simulation lowers the number of cloud droplets activated, results in larger cloud droplets, and initiates precipitation for nondrizzling polluted clouds or precedes the precipitation process for drizzling clouds. However, giant sea salt aerosol is found to have a negligible effect on τ for lightly precipitating cases, while resulting in a relative reduction of τ of 3%–77% (increasing with Na, for Na = 1000–2500 cm−3) for heavily precipitating cases, suggesting that the impact of giant sea salt is only important for moist and potentially convective clouds. Finally, a regression analysis of the simulations shows that the second indirect effect is more evident in clear than polluted cases. The second indirect effect is found to enhance (reduce) the overall aerosol indirect effect for heavily (lightly) drizzling clouds; that is, τ is larger (smaller) for the same relative change in Na than considering the Twomey (first indirect) effect alone. The aerosol indirect effect (on τ) is lessened in the daytime afternoon conditions and is dominated by the Twomey effect; however, the effect in the early morning is close but slightly smaller than that in the nocturnal run. Diurnal variations of the aerosol indirect effect should be considered to accurately assess its magnitude.

Corresponding author address: Dr. John H. Seinfeld, California Institute of Technology, MS 210-41, 1200 E. California Blvd., Pasadena, CA 91125. Email: seinfeld@caltech.edu

Abstract

A total of 98 three-dimensional large-eddy simulations (LESs) of marine stratocumulus clouds covering both nighttime and daytime conditions were performed to explore the response of cloud optical depth (τ) to various aerosol number concentrations (Na = 50–2500 cm−3) and the covarying meteorological conditions (large-scale divergence rate and SST). The idealized First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) and the Atlantic Stratocumulus Transition Experiment (ASTEX) Lagrangian 1 sounding profiles were used to represent the lightly and heavily drizzling cases, respectively. The first and second aerosol indirect effects are identified. Through statistical analysis, τ is found be to both positively correlated with Na and cloud liquid water path (LWP) with a higher correlation associated with LWP, which is predominantly regulated by large-scale subsidence and SST. Clouds with high LWP occur under low SST or weak large-scale subsidence. Introduction of a small amount of giant sea salt aerosol into the simulation lowers the number of cloud droplets activated, results in larger cloud droplets, and initiates precipitation for nondrizzling polluted clouds or precedes the precipitation process for drizzling clouds. However, giant sea salt aerosol is found to have a negligible effect on τ for lightly precipitating cases, while resulting in a relative reduction of τ of 3%–77% (increasing with Na, for Na = 1000–2500 cm−3) for heavily precipitating cases, suggesting that the impact of giant sea salt is only important for moist and potentially convective clouds. Finally, a regression analysis of the simulations shows that the second indirect effect is more evident in clear than polluted cases. The second indirect effect is found to enhance (reduce) the overall aerosol indirect effect for heavily (lightly) drizzling clouds; that is, τ is larger (smaller) for the same relative change in Na than considering the Twomey (first indirect) effect alone. The aerosol indirect effect (on τ) is lessened in the daytime afternoon conditions and is dominated by the Twomey effect; however, the effect in the early morning is close but slightly smaller than that in the nocturnal run. Diurnal variations of the aerosol indirect effect should be considered to accurately assess its magnitude.

Corresponding author address: Dr. John H. Seinfeld, California Institute of Technology, MS 210-41, 1200 E. California Blvd., Pasadena, CA 91125. Email: seinfeld@caltech.edu

Save