• Beres, J. H., 2004: Gravity wave generation by a three-dimensional thermal forcing. J. Atmos. Sci., 61 , 18051815.

  • Beres, J. H., , M. J. Alexander, , and J. R. Holton, 2004: A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. J. Atmos. Sci., 61 , 324337.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102 , 2605326076.

  • Garcia, R. R., , and S. Solomon, 1985: The effect of breaking gravity waves on the dynamics and chemical-component of the mesosphere and lower thermosphere. J. Geophys. Res., 90 , 38503868.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 1998: Effects of an imposed quasi-biennial oscillation in a comprehensive troposphere–stratosphere–mesosphere general circulation model. J. Atmos. Sci., 55 , 23932418.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , M. J. Reeder, , and T. L. Clark, 2001: Numerical modeling of gravity wave generation by deep tropical convection. J. Atmos. Sci., 58 , 12491274.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity waves and tidal breakdown. J. Geophys. Res., 86 , 97099714.

  • Song, I-S., , and H-Y. Chun, 2005: Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I: Theory. J. Atmos. Sci., 62 , 107124.

    • Search Google Scholar
    • Export Citation
  • Song, I-S., , H-Y. Chun, , and T. P. Lane, 2003: Generation mechanisms of convectively forced internal gravity waves and their propagation to the stratosphere. J. Atmos. Sci., 60 , 19601980.

    • Search Google Scholar
    • Export Citation
  • Xue, M., , K. Droegemeier, , V. Wong, , A. Shapiro, , and K. Brewster, 1995: ARPS Version 4.0 User’s Guide. Center for Analysis and Prediction of Storms, University of Oklahoma, 380 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 2
PDF Downloads 10 10 1

Momentum Flux Spectrum of Convectively Forced Gravity Waves: Can Diabatic Forcing Be a Proxy for Convective Forcing?

View More View Less
  • 1 Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
  • | 2 Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The momentum flux of convectively forced internal gravity waves is calculated using explicitly resolved model-simulated gravity wave data. The momentum flux in a control simulation with nonlinearity and cloud microphysical processes is compared with that in quasi-linear dry simulations with either diabatic forcing or nonlinear forcing. It is found that the momentum flux induced by either of these two sources is significantly different from each other and also from the momentum flux in the control simulation. This is because the spectral distribution and magnitude of each wave source are significantly different and the cancellation of the momentum flux by cross-correlation terms between the two sources cannot be included in the momentum flux by a single source. This suggests that a parameterization of convectively forced gravity waves must take into account nonlinear forcing as well as diabatic forcing in order to qualitatively and quantitatively represent the reference-level momentum flux spectrum.

Corresponding author address: Prof. Hye-Yeong Chun, Department of Atmospheric Sciences, Yonsei University, Shinchon-dong, Seodaemun-ku, Seoul 120-749, South Korea. Email: chy@atmos.yonsei.ac.kr

Abstract

The momentum flux of convectively forced internal gravity waves is calculated using explicitly resolved model-simulated gravity wave data. The momentum flux in a control simulation with nonlinearity and cloud microphysical processes is compared with that in quasi-linear dry simulations with either diabatic forcing or nonlinear forcing. It is found that the momentum flux induced by either of these two sources is significantly different from each other and also from the momentum flux in the control simulation. This is because the spectral distribution and magnitude of each wave source are significantly different and the cancellation of the momentum flux by cross-correlation terms between the two sources cannot be included in the momentum flux by a single source. This suggests that a parameterization of convectively forced gravity waves must take into account nonlinear forcing as well as diabatic forcing in order to qualitatively and quantitatively represent the reference-level momentum flux spectrum.

Corresponding author address: Prof. Hye-Yeong Chun, Department of Atmospheric Sciences, Yonsei University, Shinchon-dong, Seodaemun-ku, Seoul 120-749, South Korea. Email: chy@atmos.yonsei.ac.kr

Save