Simulations of Dynamics and Transport during the September 2002 Antarctic Major Warming

Gloria L. Manney Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, and Department of Natural Sciences, New Mexico Highlands University, Las Vegas, New Mexico

Search for other papers by Gloria L. Manney in
Current site
Google Scholar
PubMed
Close
,
Joseph L. Sabutis School of Education and Department of Mathematical Sciences, New Mexico Highlands University, Las Vegas, New Mexico

Search for other papers by Joseph L. Sabutis in
Current site
Google Scholar
PubMed
Close
,
Douglas R. Allen Remote Sensing Division, Naval Research Laboratory, Washington, D.C

Search for other papers by Douglas R. Allen in
Current site
Google Scholar
PubMed
Close
,
William A. Lahoz Data Assimilation Research Centre, Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by William A. Lahoz in
Current site
Google Scholar
PubMed
Close
,
Adam A. Scaife Met Office, Exeter, Devon, United Kingdom

Search for other papers by Adam A. Scaife in
Current site
Google Scholar
PubMed
Close
,
Cora E. Randall *Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado

Search for other papers by Cora E. Randall in
Current site
Google Scholar
PubMed
Close
,
Steven Pawson NASA/Goddard Space Flight Center, Greenbelt, and Goddard Earth Science and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by Steven Pawson in
Current site
Google Scholar
PubMed
Close
,
Barbara Naujokat Institut für Meteorologie, Freie Universität Berlin, Berlin, Germany

Search for other papers by Barbara Naujokat in
Current site
Google Scholar
PubMed
Close
, and
Richard Swinbank Met Office, Exeter, Devon, United Kingdom

Search for other papers by Richard Swinbank in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A mechanistic model simulation initialized on 14 September 2002, forced by 100-hPa geopotential heights from Met Office analyses, reproduced the dynamical features of the 2002 Antarctic major warming. The vortex split on ∼25 September; recovery after the warming, westward and equatorward tilting vortices, and strong baroclinic zones in temperature associated with a dipole pattern of upward and downward vertical velocities were all captured in the simulation. Model results and analyses show a pattern of strong upward wave propagation throughout the warming, with zonal wind deceleration throughout the stratosphere at high latitudes before the vortex split, continuing in the middle and upper stratosphere and spreading to lower latitudes after the split. Three-dimensional Eliassen–Palm fluxes show the largest upward and poleward wave propagation in the 0°–90°E sector prior to the vortex split (coincident with the location of strongest cyclogenesis at the model’s lower boundary), with an additional region of strong upward propagation developing near 180°–270°E. These characteristics are similar to those of Arctic wave-2 major warmings, except that during this warming, the vortex did not split below ∼600 K. The effects of poleward transport and mixing dominate modeled trace gas evolution through most of the mid- to high-latitude stratosphere, with a core region in the lower-stratospheric vortex where enhanced descent dominates and the vortex remains isolated. Strongly tilted vortices led to low-latitude air overlying vortex air, resulting in highly unusual trace gas profiles. Simulations driven with several meteorological datasets reproduced the major warming, but in others, stronger latitudinal gradients at high latitudes at the model boundary resulted in simulations without a complete vortex split in the midstratosphere. Numerous tests indicate very high sensitivity to the boundary fields, especially the wave-2 amplitude. Major warmings occurred for initial fields with stronger winds and larger vortices, but not smaller vortices, consistent with the initiation of wind deceleration by upward-propagating waves near the poleward edge of the region where wave 2 can propagate above the jet core. Thus, given the observed 100-hPa boundary forcing, stratospheric preconditioning is not needed to reproduce a major warming similar to that observed. The anomalously strong forcing in the lower stratosphere can be viewed as the primary direct cause of the major warming.

Corresponding author address: Dr. Gloria L. Manney, Department of Natural Sciences, New Mexico Highlands University, Las Vegas, NM 87701. Email: manney@mls.jpl.nasa.gov

Abstract

A mechanistic model simulation initialized on 14 September 2002, forced by 100-hPa geopotential heights from Met Office analyses, reproduced the dynamical features of the 2002 Antarctic major warming. The vortex split on ∼25 September; recovery after the warming, westward and equatorward tilting vortices, and strong baroclinic zones in temperature associated with a dipole pattern of upward and downward vertical velocities were all captured in the simulation. Model results and analyses show a pattern of strong upward wave propagation throughout the warming, with zonal wind deceleration throughout the stratosphere at high latitudes before the vortex split, continuing in the middle and upper stratosphere and spreading to lower latitudes after the split. Three-dimensional Eliassen–Palm fluxes show the largest upward and poleward wave propagation in the 0°–90°E sector prior to the vortex split (coincident with the location of strongest cyclogenesis at the model’s lower boundary), with an additional region of strong upward propagation developing near 180°–270°E. These characteristics are similar to those of Arctic wave-2 major warmings, except that during this warming, the vortex did not split below ∼600 K. The effects of poleward transport and mixing dominate modeled trace gas evolution through most of the mid- to high-latitude stratosphere, with a core region in the lower-stratospheric vortex where enhanced descent dominates and the vortex remains isolated. Strongly tilted vortices led to low-latitude air overlying vortex air, resulting in highly unusual trace gas profiles. Simulations driven with several meteorological datasets reproduced the major warming, but in others, stronger latitudinal gradients at high latitudes at the model boundary resulted in simulations without a complete vortex split in the midstratosphere. Numerous tests indicate very high sensitivity to the boundary fields, especially the wave-2 amplitude. Major warmings occurred for initial fields with stronger winds and larger vortices, but not smaller vortices, consistent with the initiation of wind deceleration by upward-propagating waves near the poleward edge of the region where wave 2 can propagate above the jet core. Thus, given the observed 100-hPa boundary forcing, stratospheric preconditioning is not needed to reproduce a major warming similar to that observed. The anomalously strong forcing in the lower stratosphere can be viewed as the primary direct cause of the major warming.

Corresponding author address: Dr. Gloria L. Manney, Department of Natural Sciences, New Mexico Highlands University, Las Vegas, NM 87701. Email: manney@mls.jpl.nasa.gov

Save
  • Allen, D. R., R. M. Bevilacqua, G. E. Nedoluha, C. E. Randall, and G. L. Manney, 2003: Unusual stratospheric transport and mixing during the 2002 Antarctic winter. Geophys. Res. Lett., 30 .1599, doi:10.1029/2003GL017117.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. 1st ed. Academic Press, 489 pp.

  • Baldwin, M. P., T. Hirooka, A. O’Neill, and S. Yoden, 2003: Major stratospheric warming in the Southern Hemisphere in 2002: Dynamical aspects of the ozone hole split. SPARC Newsletter, No. 20, SPARC Office, Toronto, ON, Canada, 24–26.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., S. A. Clough, T. N. Palmer, and P. J. Trevelyan, 1982: Simulations of an observed stratospheric warming with quasigeostrophic refractive index as a model diagnostic. Quart. J. Roy. Meteor. Soc., 108 , 475502.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., A. O’Neill, W. A. Lahoz, P. Berrisford, P. van Velthoven, H. Eskes, and H. Kelder, 2005: The splitting of the stratospheric polar vortex in the Southern Hemisphere, September 2002: Dynamical evolution. J. Atmos. Sci., 62 , 590602.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. E., A. da Silva, J. Guo, M. Siekenwicz, and D. Lamich, 1998: Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Wea. Rev., 126 , 29132926.

    • Search Google Scholar
    • Export Citation
  • Douglass, A. R., M. R. Schoeberl, R. B. Rood, and S. Pawson, 2003: Evaluation of transport in the lower tropical stratosphere in a global chemistry and transport model. J. Geophys. Res., 108 .4259, doi:10.1029/2002JD002696.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and D. P. Delisi, 1986: Evolution of potential vorticity in the winter stratosphere of January–February 1979. J. Geophys. Res., 91 , 11991208.

    • Search Google Scholar
    • Export Citation
  • Fairlie, T. D. A., and A. O’Neill, 1988: The stratospheric major warming of winter 1984/1985: Observations and dynamical inferences. Quart. J. Roy. Meteor. Soc., 114 , 557578.

    • Search Google Scholar
    • Export Citation
  • Fairlie, T. D. A., M. Fisher, and A. O’Neill, 1990a: The development of narrow baroclinic zones and other small-scale structure in the stratosphere during simulated major warmings. Quart. J. Roy. Meteor. Soc., 116 , 287315.

    • Search Google Scholar
    • Export Citation
  • Fairlie, T. D. A., A. O’Neill, and V. D. Pope, 1990b: The sudden breakdown of an unusually strong cyclone in the stratosphere during winter 1988/89. Quart. J. Roy. Meteor. Soc., 116 , 767774.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., S. Sparrow, M. Juckes, A. O’Neill, and D. G. Andrews, 2003: Flow regimes in the winter stratosphere of the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 129 , 925945.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., W. Norton, C. Pascoe, and A. Charlton, 2005: A possible influence of equatorial winds on the September 2002 Southern Hemisphere sudden warming event. J. Atmos. Sci., 62 , 651667.

    • Search Google Scholar
    • Export Citation
  • Hoppel, K. W., R. Bevilacqua, D. Allen, G. Nedoluha, and C. Randall, 2003: POAM III observations of the anomalous 2002 Antarctic ozone hole. Geophys. Res. Lett., 30 .1394, doi:10.1029/2003GL016899.

    • Search Google Scholar
    • Export Citation
  • Jung, J-H., C. S. Konor, C. R. Mechoso, and A. Arakawa, 2001: A study of the stratospheric major warming and subsequent flow recovery during the winter of 1979 with an isentropic vertical coordinate model. J. Atmos. Sci., 58 , 26302649.

    • Search Google Scholar
    • Export Citation
  • Kanzawa, H., 1980: The behavior of mean zonal wind and planetary-scale disturbances in the troposphere and stratosphere during the 1973 sudden warming. J. Meteor. Soc. Japan, 58 , 329356.

    • Search Google Scholar
    • Export Citation
  • Kondragunta, S., and Coauthors, 2005: Vertical structure of the anomalous 2002 Antarctic ozone hole. J. Atmos. Sci., 62 , 801811.

  • Krüger, K., B. Naujokat, and K. Labitzke, 2005: The unusual midwinter warming in the Southern Hemisphere stratosphere of 2002: A comparison to Northern Hemisphere phenomena. J. Atmos. Sci., 62 , 603613.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., and L. M. Polvani, 2005: A very large, spontaneous stratospheric sudden warming in a simple AGCM: A prototype for the Southern Hemisphere warming of 2002? J. Atmos. Sci., 62 , 890897.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., 1977: Interannual variability of the winter stratosphere in the Northern Hemisphere. Mon. Wea. Rev., 105 , 762770.

  • Labitzke, K., 1982: On the interannual variability of the middle stratosphere during the northern winters. J. Meteor. Soc. Japan, 60 , 124139.

    • Search Google Scholar
    • Export Citation
  • Lin, S-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132 , 22932307.

  • MacKenzie, I. A., R. S. Harwood, P. A. Stott, and G. C. Watson, 1999: Radiative-dynamic effects of the Antarctic ozone hole and chemical feedback. Quart. J. Roy. Meteor. Soc., 125 , 21712203.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., J. D. Farrara, and C. R. Mechoso, 1994a: Simulations of the February 1979 stratospheric sudden warming: Model comparisons and three-dimensional evolution. Mon. Wea. Rev., 122 , 11151140.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., R. W. Zurek, A. O’Neill, and R. Swinbank, 1994b: On the motion of air through the stratospheric polar vortex. J. Atmos. Sci., 51 , 29732994.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., R. Swinbank, S. T. Massie, M. E. Gelman, A. J. Miller, R. Nagatani, A. O’Neill, and R. W. Zurek, 1996: Comparison of U.K. Meteorological Office and U.S. National Meteorological Center stratospheric analyses during northern and southern winter. J. Geophys. Res., 101 , 1031110334.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., W. A. Lahoz, R. Swinbank, A. O’Neill, P. M. Connew, and R. W. Zurek, 1999: Simulation of the December 1998 stratospheric major warming. Geophys. Res. Lett., 26 , 27332736.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., R. M. Bevilacqua, K. W. Hoppel, W. A. Lahoz, A. O’Neill, and J. M. Russell III, 2000a: Observations and modeling of transport during the December 1998 stratospheric major warming. Preprints. 11th Conf. on the Middle Atmosphere, Long Beach, CA, Amer. Meteor. Soc., 47.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., H. A. Michelsen, F. W. Irion, M. R. Gunson, G. C. Toon, and A. E. Roche, 2000b: Lamination and polar vortex development in fall from ATMOS long-lived trace gases observed during November 1994. J. Geophys. Res., 105 , 2902329038.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., W. A. Lahoz, J. L. Sabutis, A. O’Neill, and L. Steenman-Clark, 2002: Simulations of fall and early winter in the stratosphere. Quart. J. Roy. Meteor. Soc., 128 , 22052237.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., J. L. Sabutis, S. Pawson, M. L. Santee, B. Naujokat, R. Swinbank, M. E. Gelman, and W. Ebisuzaki, 2003: Lower stratospheric temperature differences between meteorological analyses in two cold Arctic winters and their impact on polar processing studies. J. Geophys. Res., 108 .8328, doi:10.1029/2001JD001149.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27 , 871883.

  • McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305 , 593600.

  • Naujokat, B., K. Krüger, K. Matthes, J. Hoffmann, M. Kunze, and K. Labitzke, 2002: The early major warming in December 2001—Exceptional? Geophys. Res. Lett., 29 .2023, doi:10.1029/2002GL015316.

    • Search Google Scholar
    • Export Citation
  • Newman, P. A., and E. R. Nash, 2005: The unusual Southern Hemisphere stratosphere winter of 2002. J. Atmos. Sci., 62 , 614628.

  • Newman, P. A., L. R. Lait, M. R. Schoeberl, R. M. Nagatani, and A. J. Krueger, 1989: Meteorological atlas of the Northern Hemisphere lower stratosphere for January and February 1989 during the Airborne Arctic Stratospheric Expedition. Tech. Rep. 4145, NASA.

  • O’Neill, A., and V. D. Pope, 1988: Simulations of linear and nonlinear disturbances in the stratosphere. Quart. J. Roy. Meteor. Soc., 114 , 10631110.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42 , 217229.

  • Polvani, L. M., and R. Saravanan, 2000: The three-dimensional structure of breaking Rossby waves in the polar wintertime stratosphere. J. Atmos. Sci., 57 , 36633685.

    • Search Google Scholar
    • Export Citation
  • Randall, C. E., G. L. Manney, D. R. Allen, R. M. Bevilacqua, C. Trepte, W. A. Lahoz, and A. O’Neill, 2005: Reconstruction and simulation of stratospheric ozone distributions during the 2002 austral winter. J. Atmos. Sci., 62 , 748764.

    • Search Google Scholar
    • Export Citation
  • Sabutis, J. L., 1997: The short-term transport of zonal mean ozone using a residual mean circulation calculated from observations. J. Atmos. Sci., 54 , 10941106.

    • Search Google Scholar
    • Export Citation
  • Sabutis, J. L., R. P. Turco, and S. K. Kar, 1997: Wintertime planetary wave propagation in the lower stratosphere and its observed effect on Northern Hemisphere temperature–ozone correlations. J. Geophys. Res., 102 , 2170921717.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and I. N. James, 2000: Response of the stratosphere to interannual variability of tropospheric planetary waves. Quart. J. Roy. Meteor. Soc., 126 , 275297.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., R. Swinbank, D. R. Jackson, N. Butchart, H. Thornton, M. Keil, and L. Henderson, 2005: Stratospheric vacillations and the major warming over Antarctica in 2002. J. Atmos. Sci., 62 , 629639.

    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., A. R. Douglass, Z. Zhu, and S. Pawson, 2003: A comparison of the lower stratospheric age spectra derived from a general circulation model and two data assimilation systems. J. Geophys. Res., 108 .4113, doi:10.1029/2002JD002652.

    • Search Google Scholar
    • Export Citation
  • Scott, R. K., and P. H. Haynes, 1998: Internal interannual variability of the extratropical stratospheric circulation: The low-latitude flywheel. Quart. J. Roy. Meteor. Soc., 124 , 21492173.

    • Search Google Scholar
    • Export Citation
  • Shine, K. P., 1987: The middle atmosphere in the absence of dynamic heat fluxes. Quart. J. Roy. Meteor. Soc., 113 , 603633.

  • Simmons, A. J., M. Hortal, G. Kelly, A. McNally, A. Untch, and S. Uppala, 2005: ECMWF analyses and forecasts of stratospheric winter polar vortex breakup: September 2002 in the Southern Hemisphere and related events. J. Atmos. Sci., 62 , 668689.

    • Search Google Scholar
    • Export Citation
  • Sinnhuber, B-M., M. Weber, A. Amankwah, and J. P. Burrows, 2003: Total ozone during the unusual Antarctic winter of 2002. Geophys. Res. Lett., 30 .1580, doi:10.1029/2002GL016798.

    • Search Google Scholar
    • Export Citation
  • Smith, A. K., 1992: Preconditioning for stratospheric sudden warmings: Sensitivity studies with a numerical model. J. Atmos. Sci., 49 , 10031019.

    • Search Google Scholar
    • Export Citation
  • Swinbank, R., and A. O’Neill, 1994: A stratosphere–troposphere data assimilation system. Mon. Wea. Rev., 122 , 686702.

  • Swinbank, R., N. B. Ingleby, P. M. Boorman, and R. J. Renshaw, 2002: A 3D variational data assimilation system for the stratosphere and troposphere. Tech. Rep. 71, Met Office Numerical Weather Prediction Forecasting Research Scientific Paper, 33 pp.

  • Thuburn, J., and R. Brugge, 1994: The UGAMP stratosphere mesophere model. Tech. Rep., Internal Rep. 34, UGAMP, 10 pp.

  • Varotsos, C., 2002: The Southern Hemisphere ozone hole split in 2002. Environ. Sci. Pollut. Res., 9 , 375376.

  • Weber, M., S. Dhomse, F. Wittrock, A. Richter, B. M. Sinnhuber, and J. P. Burrows, 2003: Dynamical control of NH and SH winter/spring total ozone from GOME observations in 1995–2002. Geophys. Res. Lett., 30 .1583, doi:10.1029/2002GL016799.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 244 59 5
PDF Downloads 127 42 2