A Simple Parameterization Coupling the Convective Daytime Boundary Layer and Fair-Weather Cumuli

Larry K. Berg Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Larry K. Berg in
Current site
Google Scholar
PubMed
Close
and
Roland B. Stull Atmospheric Science Programme, Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Roland B. Stull in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new parameterization for boundary layer cumulus clouds, called the cumulus potential (CuP) scheme, is introduced. This scheme uses joint probability density functions (JPDFs) of virtual potential temperature (θυ) and water-vapor mixing ratio (r), as well as the mean vertical profiles of θυ, to predict the amount and size distribution of boundary layer cloud cover. This model considers the diversity of air parcels over a heterogeneous surface, and recognizes that some parcels rise above their lifting condensation level to become cumulus, while other parcels might rise as noncloud updrafts. This model has several unique features: 1) cloud cover is determined from the boundary layer JPDF of θυ versus r, 2) clear and cloudy thermals are allowed to coexist at the same altitude, and 3) a range of cloud-base heights, cloud-top heights, and cloud thicknesses are predicted within any one cloud field, as observed.

Using data from Boundary Layer Experiment 1996 and a model intercomparsion study using large eddy simulation (LES) based on Barbados Oceanographic and Meteorological Experiment (BOMEX), it is shown that the CuP model does a good job predicting cloud-base height and cloud-top height. The model also shows promise in predicting cloud cover, and is found to give better cloud-cover estimates than three other cumulus parameterizations: one based on relative humidity, a statistical scheme based on the saturation deficit, and a slab model.

Corresponding author address: Dr. Larry K. Berg, Pacific National Lab, K9-30, Richland, WA 98325. Email: larry.berg@pnl.gov

Abstract

A new parameterization for boundary layer cumulus clouds, called the cumulus potential (CuP) scheme, is introduced. This scheme uses joint probability density functions (JPDFs) of virtual potential temperature (θυ) and water-vapor mixing ratio (r), as well as the mean vertical profiles of θυ, to predict the amount and size distribution of boundary layer cloud cover. This model considers the diversity of air parcels over a heterogeneous surface, and recognizes that some parcels rise above their lifting condensation level to become cumulus, while other parcels might rise as noncloud updrafts. This model has several unique features: 1) cloud cover is determined from the boundary layer JPDF of θυ versus r, 2) clear and cloudy thermals are allowed to coexist at the same altitude, and 3) a range of cloud-base heights, cloud-top heights, and cloud thicknesses are predicted within any one cloud field, as observed.

Using data from Boundary Layer Experiment 1996 and a model intercomparsion study using large eddy simulation (LES) based on Barbados Oceanographic and Meteorological Experiment (BOMEX), it is shown that the CuP model does a good job predicting cloud-base height and cloud-top height. The model also shows promise in predicting cloud cover, and is found to give better cloud-cover estimates than three other cumulus parameterizations: one based on relative humidity, a statistical scheme based on the saturation deficit, and a slab model.

Corresponding author address: Dr. Larry K. Berg, Pacific National Lab, K9-30, Richland, WA 98325. Email: larry.berg@pnl.gov

Save
  • Albrecht, B. A., 1979: A model of the thermodynamic structure of trade-wind boundary layer. Part II: Applications. J. Atmos. Sci., 36 , 9098.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1981: Parameterization of trade-cumulus cloud amounts. J. Atmos. Sci., 38 , 97105.

  • Barnes, G. M., J. C. Frankhauser, and W. D. Browning, 1996: Evolution of the vertical mass flux diagnosed net lateral mixing in isolated convective clouds. Mon. Wea. Rev., 124 , 27642784.

    • Search Google Scholar
    • Export Citation
  • Berg, L. K., 2002: A simple parameterization coupling the convective daytime boundary layer and fair-weather cumuli. Ph.D. dissertation, University of British Columbia, Vancouver, BC, Canada, 166 pp.

  • Berg, L. K., and R. B. Stull, 2002: Accuracy of point and line measures of boundary layer cloud amount. J. Appl. Meteor., 41 , 640650.

    • Search Google Scholar
    • Export Citation
  • Berg, L. K., and R. B. Stull, 2004: Parameterization of joint frequency distributions of potential temperature and water vapor mixing ratio in the daytime convective boundary layer. J. Atmos. Sci., 61 , 813828.

    • Search Google Scholar
    • Export Citation
  • Berg, L. K., R. B. Stull, E. Santoso, and J. P. Hacker, 1997: Boundary Layer Experiment—1996, Airborne Scientist Flight Log. Boundary Layer Technical Report 97-1, 116 pp. [Available from Roland Stull, Atmospheric Science Programme, Dept. of Earth and Ocean Sciences, UBC, 6339 Stores Rd. Vancouver, BC V6T 1Z4, Canada.].

  • Betts, A. K., 1973: Non-precipitating cumulus convection and its parameterization. Quart. J. Roy. Meteor. Soc., 99 , 178196.

  • Betts, A. K., 1975: Parametric interpretation of trade-wind cumulus budget studies. J. Atmos. Sci., 32 , 19341945.

  • Betts, A. K., 1976: Modeling subcloud layer structure and interaction with a shallow cumulus layer. J. Atmos. Sci., 33 , 23632382.

  • Bony, S., and K. A. Emanuel, 2001: A parameterization of the cloudiness associated with cumulus convection; Evaluation using TOGA COARE data. J. Atmos. Sci., 58 , 31583183.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., 1993: Understanding Albrecht’s model of trade cumulus cloud fields. J. Atmos. Sci., 50 , 22642283.

  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132 , 864882.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., R. Fjortoft, and J. von Neuman, 1950: Numerical integration of the barotropic vorticity equation. Tellus, 2 , 237254.

  • Cheinet, S., 2003: A multiple mass-flux parameterization for the surface-generated convection. Part I: Dry plumes. J. Atmos. Sci., 60 , 23132327.

    • Search Google Scholar
    • Export Citation
  • Cuijpers, J. W. M., and P. Bechtold, 1995: A simple parameterization of cloud water related variables for use in boundary layer models. J. Atmos. Sci., 52 , 24862490.

    • Search Google Scholar
    • Export Citation
  • Delnore, V. E., 1972: The diurnal variation of the temperature structure and some aspects of heat transfer at the BOMEX fixed stations. J. Phys. Oceanogr., 2 , 239247.

    • Search Google Scholar
    • Export Citation
  • Ek, M., and L. Mahrt, 1991: A formulation for boundary-layer cloud cover. Ann. Geophys., 9 , 716724.

  • Grant, A. L. M., and A. R. Brown, 1999: A similarity hypothesis for shallow-cumulus transports. Quart. J. Roy. Meteor. Soc., 125 , 19131936.

    • Search Google Scholar
    • Export Citation
  • Grenier, H., and C. S. Bretherton, 2001: A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon. Wea. Rev., 129 , 357377.

    • Search Google Scholar
    • Export Citation
  • Haiden, T., 1996: Generalization of Albrecht’s cumulus cloud amount parameterization. J. Atmos. Sci., 53 , 31643167.

  • Holland, J. Z., and E. M. Rasmusson, 1973: Measurements of atmospheric mass, energy and momentum budgets over a 500-kilometer square of tropical ocean. Mon. Wea. Rev., 101 , 4455.

    • Search Google Scholar
    • Export Citation
  • Lappen, C-L., and D. A. Randall, 2001: Toward a unified parameterization of the boundary layer and moist convection. Part I: A new type of mass-flux model. J. Atmos. Sci., 58 , 20212036.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128 , 31873199.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1954: Some results of a trade-cumulus cloud investigation. J. Meteor., 11 , 220237.

  • Malkus, J. S., 1958: On the structure of the trade wind moist layer. Pap. Phys. Oceanogr. Meteor., 13 ..

  • Mellor, G., 1977: The Gaussian cloud model relations. J. Atmos. Sci., 34 , 356358.

  • Neggers, R. A. J., A. P. Siebesma, and H. J. J. Jonker, 2002: A multiparcel model for shallow cumulus convection. J. Atmos. Sci., 59 , 16551668.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1975: Observational determination of cloud mass flux distributions. J. Atmos. Sci., 32 , 7391.

  • Nitta, T., and S. Esbensen, 1974: Heat and moisture budget analyses using BOMEX data. Mon. Wea. Rev., 102 , 1728.

  • Richardson, R. F., 1922: Weather Prediction by Numerical Process. Cambridge University Press, 236 pp. (Reprint, 1965, Dover Publications.).

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Tech. Rep. 218, Max-Planck-Institut fur Meteorologie, 90 pp.

  • Schrieber, K., R. Stull, and Q. Zhang, 1996: Distributions of surface layer buoyancy versus lifted condensation level over a heterogeneous land surface. J. Atmos. Sci., 53 , 10861107.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci., 52 , 650666.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and A. A. M. Holtslag, 1996: Model impacts of entrainment and detrainment rates in shallow cumulus convection. J. Atmos. Sci., 53 , 23542364.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large-eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60 , 12011219.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 97 , 471489.

  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113 , 899927.

    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a GCM. Quart. J. Roy. Meteor. Soc., 116 , 435460.

    • Search Google Scholar
    • Export Citation
  • Sommeria, G., and J. W. Deardorff, 1977: Subgrid-scale condensation in models of non-precipitating clouds. J. Atmos. Sci., 34 , 344355.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75 , 12011222.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1985: A fair-weather cumulus cloud classification scheme for mixed layer studies. J. Climate Appl. Meteor, 24 , 4956.

  • Stull, R. B., and E. Eloranta, 1985: A case study of the accuracy of routine, fair-weather cloud-base reports. Natl. Wea. Dig., 10 , 1924.

    • Search Google Scholar
    • Export Citation
  • Stull, R., E. Santoso, L. Berg, and J. Hacker, 1997: Boundary Layer Experiment 1996 (BLX96). Bull. Amer. Meteor. Soc, 78 , 11491158.

  • Sundqvist, H., 1978: A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104 , 677690.

    • Search Google Scholar
    • Export Citation
  • von Salzen, K., and N. A. McFarlane, 2002: Parameterization of bulk effects of lateral and cloud-top entrainment in transient shallow cumulus clouds. J. Atmos. Sci., 59 , 14051430.

    • Search Google Scholar
    • Export Citation
  • Wetzel, P. J., 1990: A simple parcel method for prediction of cumulus onset and area-averaged cloud amount over heterogeneous land surfaces. J. Appl. Meteor., 29 , 516523.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and B. A. Albrecht, 1986: Stratocumulus model with an internal circulation. J. Atmos. Sci., 43 , 23742391.

  • Wang, S., and B. A. Albrecht, 1990: A mean gradient of the convective boundary layer. J. Atmos. Sci., 47 , 126138.

  • Wyngaard, J. C., and C-H. Moeng, 1992: Parameterization turbulent diffusion through the joint probability density. Bound.-Layer Meteor., 60 , 113.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and S. K. Krueger, 1991: Evaluation of cloudiness parameterizations using a cumulus ensemble model. Mon. Wea. Rev., 119 , 342367.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 161 37 1
PDF Downloads 99 28 1