Bimodal Behavior in the Zonal Mean Flow of a Baroclinic β-Channel Model

S. Kravtsov Department of Atmospheric and Oceanic Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by S. Kravtsov in
Current site
Google Scholar
PubMed
Close
,
A. W. Robertson Department of Atmospheric and Oceanic Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by A. W. Robertson in
Current site
Google Scholar
PubMed
Close
, and
M. Ghil Department of Atmospheric and Oceanic Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by M. Ghil in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The dynamical origin of midlatitude zonal-jet variability is examined in a thermally forced, quasigeostrophic, two-layer channel model on a β plane. The model’s behavior is studied as a function of the bottom-friction strength.

Two distinct zonal-flow states exist at realistic, low, and intermediate values of the bottom drag; these two states are maintained by the eddies and differ mainly in terms of the meridional position of their climatological jets. The system’s low-frequency evolution is characterized by irregular transitions between the two states.

For a given branch of model solutions, the leading stationary and propagating empirical orthogonal functions are related to eigenmodes of the model’s dynamical operator, linearized about the climatological state on this branch. Nonlinear interactions between these modes are instrumental in determining their relative energy level. In particular, the stationary modes’ self-interaction is shown to vanish. Thus, these modes do not exchange energy with the mean flow and, consequently, dominate the lowest-frequency behavior in the model. The leading stationary mode resembles the observed annular mode in the Southern Hemisphere.

The bimodality is due to nonlinear interactions between nearly equivalent barotropic, stationary, and propagating modes, while the synoptic eddies play a modest role in determining the relative persistence of the two states. The role of synoptic eddies is very substantial only at unrealistically high values of the bottom drag, where they give rise to ultralow frequency variability by modifying the jet in a way that reinforces generation of the eddy field. This type of behavior is related to the presence of a homoclinic orbit in the model’s phase space and is not apparent for more realistic, lower values of the bottom drag.

* Current affiliation: International Research Institute for Climate Prediction (IRI), Palisades, New York

+ Additional affiliation: Département Terre–Atmosphère–Océan and Laboratoire de Météorologie Dynamique/IPSL, Paris, France

Corresponding author address: Dr. Sergey Kravtsov, Dept. of Atmospheric and Oceanic Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1565. Email: sergey@atmos.ucla.edu

Abstract

The dynamical origin of midlatitude zonal-jet variability is examined in a thermally forced, quasigeostrophic, two-layer channel model on a β plane. The model’s behavior is studied as a function of the bottom-friction strength.

Two distinct zonal-flow states exist at realistic, low, and intermediate values of the bottom drag; these two states are maintained by the eddies and differ mainly in terms of the meridional position of their climatological jets. The system’s low-frequency evolution is characterized by irregular transitions between the two states.

For a given branch of model solutions, the leading stationary and propagating empirical orthogonal functions are related to eigenmodes of the model’s dynamical operator, linearized about the climatological state on this branch. Nonlinear interactions between these modes are instrumental in determining their relative energy level. In particular, the stationary modes’ self-interaction is shown to vanish. Thus, these modes do not exchange energy with the mean flow and, consequently, dominate the lowest-frequency behavior in the model. The leading stationary mode resembles the observed annular mode in the Southern Hemisphere.

The bimodality is due to nonlinear interactions between nearly equivalent barotropic, stationary, and propagating modes, while the synoptic eddies play a modest role in determining the relative persistence of the two states. The role of synoptic eddies is very substantial only at unrealistically high values of the bottom drag, where they give rise to ultralow frequency variability by modifying the jet in a way that reinforces generation of the eddy field. This type of behavior is related to the presence of a homoclinic orbit in the model’s phase space and is not apparent for more realistic, lower values of the bottom drag.

* Current affiliation: International Research Institute for Climate Prediction (IRI), Palisades, New York

+ Additional affiliation: Département Terre–Atmosphère–Océan and Laboratoire de Météorologie Dynamique/IPSL, Paris, France

Corresponding author address: Dr. Sergey Kravtsov, Dept. of Atmospheric and Oceanic Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1565. Email: sergey@atmos.ucla.edu

Save
  • Akahori, K., and S. Yoden, 1997: Zonal flow vacillation and bimodality of baroclinic eddy life cycles in a simple global circulation model. J. Atmos. Sci., 54 , 23492361.

    • Search Google Scholar
    • Export Citation
  • Branstator, G. W., 1992: The maintenance of low-frequency atmospheric anomalies. J. Atmos. Sci., 49 , 19241945.

  • Branstator, G. W., 1995: Organization of storm track anomalies by recurring low-frequency circulation anomalies. J. Atmos. Sci., 52 , 207226.

    • Search Google Scholar
    • Export Citation
  • Branstator, G. W., and J. D. Opsteegh, 1989: Free solutions of the barotropic vorticity equation. J. Atmos. Sci., 46 , 17991814.

  • Brunet, G., 1994: Empirical normal-mode analysis of atmospheric data. J. Atmos. Sci., 51 , 932952.

  • Cai, M., and H. M. Van den Dool, 1994: Dynamical decomposition of low- and high-frequency tendencies. J. Atmos. Sci., 51 , 20862100.

  • Chang, K-I., M. Ghil, K. Ide, and C-C. A. Lai, 2001: Transition to aperiodic variability in a wind-driven double-gyre circulation model. J. Phys. Oceanogr., 31 , 12601286.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and J. G. DeVore, 1979: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci., 36 , 12051216.

  • Corti, S., A. Giannini, S. Tibaldi, and F. Molteni, 1997: Patterns of low-frequency variability in a three-level quasi-geostrophic model. Climate Dyn., 13 , 883904.

    • Search Google Scholar
    • Export Citation
  • Crommelin, D. T., 2002: Homoclinic dynamics: A scenario for atmospheric ultra-low-frequency variability. J. Atmos. Sci., 59 , 15331549.

    • Search Google Scholar
    • Export Citation
  • Crommelin, D. T., 2003: Regime transitions and heteroclinic connections in a barotropic atmosphere. J. Atmos. Sci., 60 , 229246.

  • Da Costa, E., and R. Vautard, 1997: A qualitative realistic low-order model of the extratropical low-frequency variability built from long records of potential vorticity. J. Atmos. Sci., 54 , 10641084.

    • Search Google Scholar
    • Export Citation
  • Deser, C., 2000: On the teleconnectivity of the “Arctic Oscillation.”. Geophys. Res. Lett., 27 , 779782.

  • Farrell, B. F., and P. J. Ioannou, 1993: Stochastic forcing of the linearized Navier-Stokes equations. Phys. Fluids A, 5 , 26002609.

  • Farrell, B. F., and P. J. Ioannou, 1995: Stochastic dynamics of the midlatitude atmospheric jet. J. Atmos. Sci., 52 , 16421656.

  • Feldstein, S. B., 2000: Is interannual zonal mean flow variability simply climate noise? J. Climate, 13 , 23562362.

  • Feldstein, S. B., and S. Lee, 1996: Mechanisms of zonal index variability in an aquaplanet GCM. J. Atmos. Sci., 53 , 35413555.

  • Feldstein, S. B., and S. Lee, 1998: Is the atmospheric zonal index driven by an eddy feedback? J. Atmos. Sci., 55 , 30773086.

  • Gardiner, C., 1983: Handbook of Stochastic Methods. Springer-Verlag, 442 pp.

  • Ghil, M., and S. Childress, 1987: Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory and Climate Dynamics. Springer-Verlag, 485 pp.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and A. W. Robertson, 2000: Solving problems with GCMs: General circulation models and their role in the climate modeling hierarchy. General Circulation Model Development: Past, Present and Future, D. Randall, Ed., Academic Press, 285–325.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and A. W. Robertson, 2002: “Waves” vs. “particles” in the atmosphere’s phase space: A pathway to long-range forecasting? Proc. Natl. Acad. Sci., 99 , (Suppl. 1). 24932500.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., Y. Feliks, and L. U. Sushama, 2002: Baroclinic and barotropic aspects of the wind-driven ocean circulation. Physica D, 167 , 135.

    • Search Google Scholar
    • Export Citation
  • Gill, A., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Greatbatch, R. J., 1987: A model for the inertial recirculation of a gyre. J. Mar. Res., 45 , 601634.

  • Greatbatch, R. J., 1988: On the scaling of the inertial subgyres. Dyn. Atmos. Oceans, 11 , 265285.

  • Guckenheimer, J., and P. Holmes, 2002: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. 2d ed. Springer-Verlag, 475 pp.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1995: A PV view of zonal flow vacillation. J. Atmos. Sci., 52 , 25612576.

  • Hartmann, D. L., and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55 , 13031315.

  • Hurrel, J. E., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269 , 676679.

    • Search Google Scholar
    • Export Citation
  • Illari, L., 1984: A diagnostic study of the potential vorticity in a warm blocking anticyclone. J. Atmos. Sci., 41 , 35183526.

  • Itoh, H., and M. Kimoto, 1999: Weather regimes, low-frequency oscillations, and principal patterns of variability: A perspective of extratropical low-frequency variability. J. Atmos. Sci., 56 , 26842705.

    • Search Google Scholar
    • Export Citation
  • James, I. N., and L. J. Gray, 1986: Concerning the effect of surface drag on the circulation of a baroclinic planetary atmosphere. Quart. J. Roy. Meteor. Soc., 112 , 12311250.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., and I. G. Watterson, 1999: The structure and predictability of the “high-latitude mode” in the CSIRO9 general circulation model. J. Atmos. Sci., 56 , 38593873.

    • Search Google Scholar
    • Export Citation
  • Kimoto, M., and M. Ghil, 1993: Multiple flow regimes in the Northern Hemisphere winter. Part II: Sectorial regimes and preferred transitions. J. Atmos. Sci., 50 , 26452673.

    • Search Google Scholar
    • Export Citation
  • Kimoto, M., F-F. Jin, M. Watanabe, and N. Yasutomi, 2001: Zonal–eddy coupling and a neutral mode theory for the Arctic Oscillation. Geophys. Res. Lett., 28 , 737740.

    • Search Google Scholar
    • Export Citation
  • Kondrashov, D., K. Ide, and M. Ghil, 2004: Weather regimes and preferred transition paths in a three-level quasigeostrophic model. J. Atmos. Sci., 61 , 568587.

    • Search Google Scholar
    • Export Citation
  • Koo, S., 2002: Nonlinear aspects of atmospheric zonal-flow vacillation. Ph.D. thesis, University of California, Los Angeles, 163 pp.

  • Koo, S., and M. Ghil, 2002: Successive bifurcations in a simple model of atmospheric zonal-flow vacillation. Chaos, 12 , 300309.

  • Koo, S., A. W. Robertson, and M. Ghil, 2003: Multiple regimes and low-frequency oscillations in the Southern Hemisphere’s zonal-mean flow. J. Geophys. Res., 107 .4596, doi:10.1029/2001JD001353.

    • Search Google Scholar
    • Export Citation
  • Kravtsov, S., and A. W. Robertson, 2002: Midlatitude ocean–atmosphere interaction in an idealized coupled model. Climate Dyn., 19 , 693711.

    • Search Google Scholar
    • Export Citation
  • Kravtsov, S., A. W. Robertson, and M. Ghil, 2003: Low-frequency variability in a baroclinic β channel with land–sea contrast. J. Atmos. Sci., 60 , 22672293.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and S. B. Feldstein, 1996: Mechanisms of zonal index evolution in a two-layer model. J. Atmos. Sci., 53 , 22322246.

  • Legras, B., and M. Ghil, 1985: Persistent anomalies, blocking and variations in atmospheric predictability. J. Atmos. Sci., 42 , 433471.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58 , 33123327.

  • Lorenz, D. J., and D. L. Hartmann, 2003: Eddy–zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16 , 12121227.

  • Lorenz, E. N., 1963: The mechanics of vacillation. J. Atmos. Sci., 20 , 448464.

  • Marshall, J., and F. Molteni, 1993: Toward a dynamical understanding of atmospheric weather regimes. J. Atmos. Sci., 50 , 17921818.

  • Marshall, J., and D. W. K. So, 1990: Thermal equilibration of planetary waves. J. Atmos. Sci., 47 , 963978.

  • McWilliams, J. C., 1977: A note on a consistent quasi-geostrophic model in a multiply connected domain. Dyn. Atmos. Oceans, 1 , 427441.

    • Search Google Scholar
    • Export Citation
  • Meacham, S. P., 2000: Low-frequency variability in the wind-driven circulation. J. Phys. Oceanogr., 30 , 269293.

  • Metz, W., 1994: Singular modes and low-frequency atmospheric variability. J. Atmos. Sci., 51 , 17401753.

  • Nadiga, B. T., and B. P. Luce, 2001: Global bifurcation of Shilnikov type in a double-gyre ocean model. J. Phys. Oceanogr., 31 , 26692690.

    • Search Google Scholar
    • Export Citation
  • Namias, J., 1953: Thirty-Day Forecasting: A Review of a Ten-Year Experiment. Meteor. Monogr., No. 6, Amer. Meteor. Soc., 83 pp.

  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110 , 699706.

    • Search Google Scholar
    • Export Citation
  • Oppenheim, A. V., and R. W. Schafer, 1989: Discrete-Time Signal Processing. Prentice Hall, 879 pp.

  • Pedlosky, J., 1981: Resonant topographic waves in barotropic and baroclinic flows. J. Atmos. Sci., 38 , 26262641.

  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2d ed. Springer-Verlag, 621 pp.

  • Preisendorfer, R. W., 1988: Principal Component Analysis in Meteorology and Oceanography. Elsevier, 425 pp.

  • Reinhold, B. B., and R. T. Pierrehumbert, 1982: Dynamics of weather regimes: Quasi-stationary waves and blocking. Mon. Wea. Rev., 110 , 11051145.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., 2001: Influence of ocean–atmosphere interaction on the Arctic Oscillation in two general circulation models. J. Climate, 14 , 32403254.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and W. Metz, 1989: Three-dimensional instability of persistent anomalous large-scale flows. J. Atmos. Sci., 46 , 27832801.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and W. Metz, 1990: Transient eddy feedbacks derived from linear theory and observations. J. Atmos. Sci., 47 , 27432764.

    • Search Google Scholar
    • Export Citation
  • Robinson, W., 1991: The dynamics of low-frequency variability in a simple model of the global atmosphere. J. Atmos. Sci., 48 , 429441.

    • Search Google Scholar
    • Export Citation
  • Robinson, W., 1996: Does eddy feedback sustain variability in the zonal index? J. Atmos. Sci., 53 , 35563569.

  • Robinson, W., 2000: A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci., 57 , 415422.

  • Schuss, Z., 1980: Theory and Applications of Stochastic Differential Equations. Wiley, 321 pp.

  • Shilnikov, L. P., 1965: A case of the existence of a denumerable set of periodic motions. Sov. Math. Dokl., 6 , 163166.

  • Shutts, G. J., 1983: The propagation of eddies in diffluent jet streams: Eddy vorticity forcing of blocking flow fields. Quart. J. Roy. Meteor. Soc., 109 , 737761.

    • Search Google Scholar
    • Export Citation
  • Simonnet, E., M. Ghil, K. Ide, R. Temam, and S. Wang, 2003a: Low-frequency variability in shallow-water models of the wind-driven ocean circulation. Part I: Steady-state solutions. J. Phys. Oceanogr., 33 , 712728.

    • Search Google Scholar
    • Export Citation
  • Simonnet, E., M. Ghil, K. Ide, R. Temam, and S. Wang, 2003b: Low-frequency variability in shallow-water models of the wind-driven ocean circulation. Part II: Time-dependent solutions. J. Phys. Oceanogr., 33 , 729752.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., 2000: Stationary wave accumulation and generation of low-frequency variability on zonally varying flows. J. Atmos. Sci., 57 , 22622280.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13 , 10181036.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behavior. Quart. J. Roy. Meteor. Soc., 119 , 1755.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., B. Legras, and M. Deque, 1988: On the source of midlatitude low-frequency variability. Part I: A statistical approach to persistence. J. Atmos. Sci., 45 , 28112843.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., P. Yiou, and M. Ghil, 1992: Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D, 58 , 95126.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1983: The climatological mean stationary waves: Observational evidence. Large-Scale Dynamical Processes in the Atmosphere. B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 27–53.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 2000: North Atlantic Oscillation/annular mode: Two paradigms–One phenomenon. Quart. J. Roy. Meteor. Soc., 126 , 791805.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and F-F. Jin, 2003: A moist baroclinic model: Coupled dynamical-convective response to El Niño. J. Climate, 16 , 11211139.

    • Search Google Scholar
    • Export Citation
  • Weeks, E. R., Y. Tian, J. S. Urbach, K. Ide, H. L. Swinney, and M. Ghil, 1997: Transitions between blocked and zonal flows in a rotating annulus with topography. Science, 278 , 15981601.

    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., M. V. Kurgansky, K. Dethloff, and D. R. Handorf, 2003: Extratropical low-frequency variability in a three-level quasi-geostrophic atmospheric model with different spectral resolution. J. Geophys. Res., 108 .4171, doi:10.1029/2001JD001282.

    • Search Google Scholar
    • Export Citation
  • Yu, J-Y., and D. L. Hartmann, 1993: Zonal flow vacillation and eddy forcing in a simple GCM of the atmosphere. J. Atmos. Sci., 50 , 32443259.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 139 72 5
PDF Downloads 43 27 1