Southern Hemisphere Annular Mode Variability and the Role of Optimal Nonmodal Growth

Harun A. Rashid School of Earth Sciences, The University of Melbourne, Melbourne, Australia

Search for other papers by Harun A. Rashid in
Current site
Google Scholar
PubMed
Close
and
Ian Simmonds School of Earth Sciences, The University of Melbourne, Melbourne, Australia

Search for other papers by Ian Simmonds in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The southern annular mode is the leading mode of Southern Hemisphere circulation variability, the temporal evolution of which is characterized by large amplitudes and significant persistence. Previous investigators have suggested a positive feedback mechanism that explains some of this low-frequency variance. Here, a mechanism is proposed, involving transient nonmodal growths of the anomalies, that is at least as effective as the positive feedback mechanism in increasing the low-frequency variance of the southern annular mode. Using the vector autoregressive modeling technique, a number of linear inverse models of southern annular mode variability from National Centers for Environmental Prediction–Department of Energy (NCEP–DOE) Reanalysis 2 is derived. These models are then analyzed applying the ideas of the generalized stability theory. It is found that, as a consequence of the nonnormality of the system matrices, a significant increase in the low-frequency variance of the southern annular mode occurs through optimal nonmodal growth of the zonal wind anomalies. The nonnormality arises mainly from the relative dominance of the eddy forcing, while the nonmodal growth is caused by the interference of the nonorthogonal eigenvectors of the nonnormal system matrix. These results are demonstrated first in a simple model that retains only the two leading modes of the zonally averaged zonal wind and eddy-forcing variability, and then in a more general model that includes all the important modes. Using the more general model the authors have determined, among other things, the optimal initial perturbation and the time scale over which it experiences the maximum nonmodal growth to evolve into the pattern associated with the southern annular mode.

Corresponding author address: Dr. M. Harun Ar Rashid, Bureau of Meteorology Research Centre, PO Box 1289K, Melbourne, Victoria 3001, Australia. Email: Email: h.rashid@bom.gov.au

Abstract

The southern annular mode is the leading mode of Southern Hemisphere circulation variability, the temporal evolution of which is characterized by large amplitudes and significant persistence. Previous investigators have suggested a positive feedback mechanism that explains some of this low-frequency variance. Here, a mechanism is proposed, involving transient nonmodal growths of the anomalies, that is at least as effective as the positive feedback mechanism in increasing the low-frequency variance of the southern annular mode. Using the vector autoregressive modeling technique, a number of linear inverse models of southern annular mode variability from National Centers for Environmental Prediction–Department of Energy (NCEP–DOE) Reanalysis 2 is derived. These models are then analyzed applying the ideas of the generalized stability theory. It is found that, as a consequence of the nonnormality of the system matrices, a significant increase in the low-frequency variance of the southern annular mode occurs through optimal nonmodal growth of the zonal wind anomalies. The nonnormality arises mainly from the relative dominance of the eddy forcing, while the nonmodal growth is caused by the interference of the nonorthogonal eigenvectors of the nonnormal system matrix. These results are demonstrated first in a simple model that retains only the two leading modes of the zonally averaged zonal wind and eddy-forcing variability, and then in a more general model that includes all the important modes. Using the more general model the authors have determined, among other things, the optimal initial perturbation and the time scale over which it experiences the maximum nonmodal growth to evolve into the pattern associated with the southern annular mode.

Corresponding author address: Dr. M. Harun Ar Rashid, Bureau of Meteorology Research Centre, PO Box 1289K, Melbourne, Victoria 3001, Australia. Email: Email: h.rashid@bom.gov.au

Save
  • Andrews, D. G., 1987: On the interpretation of the Eliassen-Palm flux divergence. Quart. J. Roy. Meteor. Soc., 113 , 323338.

  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18 , 10161022.

  • Farrell, B. F., and P. J. Ioannou, 1993: Stochastic dynamics of baroclinic waves. J. Atmos. Sci., 50 , 40444057.

  • Farrell, B. F., and P. J. Ioannou, 1996a: Generalized stability theory. Part I: Autonomous operators. J. Atmos. Sci., 53 , 20252040.

  • Farrell, B. F., and P. J. Ioannou, 1996b: Generalized stability theory. Part II: Nonautonomous operators. J. Atmos. Sci., 53 , 20412053.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S., and S. Lee, 1998: Is the atmospheric zonal index driven by an eddy feedback? J. Atmos. Sci., 55 , 30773086.

  • Golub, G. H., and C. F. V. Loan, 1996: Matrix Computations. 3d ed. The Johns Hopkins University Press, 694 pp.

  • Hartmann, D. L., and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55 , 13031315.

  • Honerkamp, J., 1994: Stochastic Dynamical Systems. VCH Publishers, 535 pp.

  • Ioannou, P. J., 1995: Nonnormality increases variance. J. Atmos. Sci., 52 , 11551158.

  • Johnson, S. D., D. S. Battisti, and E. S. Sarachik, 2000: Seasonality in an empirically derived Markov model of tropical Pacific sea surface temperature anomalies. J. Climate, 13 , 33273335.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1990: The role of transient eddies in low-frequency zonal variations of the Southern Hemisphere circulation. Tellus, 42A , 4150.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., 1988: Indices of the Southern Hemisphere zonal wind. J. Climate, 1 , 183194.

  • Kidson, J. W., 1999: Principal modes of Southern Hemisphere low-frequency variability obtained from NCEP–NCAR reanalyses. J. Climate, 12 , 28082830.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., and M. R. Sinclair, 1995: The influence of persistent anomalies on Southern Hemisphere storm tracks. J. Climate, 8 , 19381950.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14 , 22382249.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and S. Feldstein, 1996: Mechanisms of zonal index evolution in a two-layer model. J. Atmos. Sci., 53 , 22322246.

  • Limpasuvan, V., and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13 , 44144429.

  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58 , 33123327.

  • Lütkepohl, H., 1993: Introduction to Multiple Time Series Analysis. 2d ed. Springer-Verlag, 545 pp.

  • Neumaier, A., and T. Schneider, 2001: Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Software, 27 , 2757.

    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, and C. Penland, 1997: Stochastic forcing of the wintertime extratropical flow. J. Atmos. Sci., 54 , 435455.

    • Search Google Scholar
    • Export Citation
  • Newman, M., M. A. Alexander, C. R. Winkler, J. D. Scott, and J. J. Barsugli, 2000: A linear diagnosis of the coupled extratropical ocean atmosphere in the GFDL GCM. Atmos. Sci. Lett., 1 , 1425.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and T. Magorian, 1993: Prediction of Niño 3 sea surface temperatures using linear inverse modeling. J. Climate, 6 , 10671076.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8 , 19992024.

  • Penland, C., and L. Matrosova, 1998: Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J. Climate, 11 , 483496.

    • Search Google Scholar
    • Export Citation
  • Rashid, H. A., and I. Simmonds, 2004: Eddy–zonal flow interactions associated with the Southern Hemisphere annular mode: Results from NCEP–DOE reanalysis and a quasi-linear model. J. Atmos. Sci., 61 , 873888.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 1991: The dynamics of the zonal index in a simple model of the atmosphere. Tellus, 43A , 295305.

  • Robinson, W. A., 1996: Does eddy feedback sustain variability in the zonal index? J. Atmos. Sci., 53 , 35563569.

  • Schneider, T., and S. M. Griffies, 1999: A conceptual framework for predictability studies. J. Climate, 12 , 31333155.

  • Shiotani, M., 1990: Low-frequency variations of the zonal mean state of the Southern Hemisphere troposphere. J. Meteor. Soc. Japan, 68 , 461470.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and K. Keay, 2000: Variability of Southern Hemisphere extratropical cyclone behavior, 1958–97. J. Climate, 13 , 550561.

    • Search Google Scholar
    • Export Citation
  • Sturaro, G., 2003: A closer look at the climatological discontinuities present in the NCEP/NCAR reanalysis temperature due to the introduction of satellite data. Climate Dyn., 21 , 309316.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13 , 10181036.

    • Search Google Scholar
    • Export Citation
  • Tiao, G. C., and G. E. P. Box, 1981: Modeling multiple time series with applications. J. Amer. Stat. Assoc., 76 , 802816.

  • Trenberth, K. E., 1991: Storm tracks in the Southern Hemisphere. J. Atmos. Sci., 48 , 21592178.

  • Vallis, G. K., E. P. Gerber, P. J. Kushner, and B. A. Cash, 2004: A mechanism and simple dynamical model of the North Atlantic Oscillation and annular modes. J. Atmos. Sci., 61 , 264280.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2000: Southern midlatitude zonal wind vacillation and its interaction with the ocean in GCM simulations. J. Climate, 13 , 562578.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2002: Wave–mean flow feedback and the persistence of simulated zonal flow vacillation. J. Atmos. Sci., 59 , 12741288.

    • Search Google Scholar
    • Export Citation
  • Wei, W. W. S., 1990: Time Series Analysis: Univariate and Multivariate Methods. Addison-Wesley, 478 pp.

  • Whitaker, J. S., and P. D. Sardeshmukh, 1998: A linear theory of extratropical synoptic eddy statistics. J. Atmos. Sci., 55 , 237258.

  • Winkler, C. R., M. Newman, and P. D. Sardeshmukh, 2001: A linear model of wintertime low-frequency variability. Part I: Formulation and forecast skill. J. Climate, 14 , 44744494.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 74 23 0
PDF Downloads 24 7 0