A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description

H. Morrison Department of Aerospace Engineering, University of Colorado, Boulder, Colorado

Search for other papers by H. Morrison in
Current site
Google Scholar
PubMed
Close
,
J. A. Curry School of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by J. A. Curry in
Current site
Google Scholar
PubMed
Close
, and
V. I. Khvorostyanov Central Aerological Observatory, Dolgoprudny, Moscow, Russia

Search for other papers by V. I. Khvorostyanov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new double-moment bulk microphysics scheme predicting the number concentrations and mixing ratios of four hydrometeor species (droplets, cloud ice, rain, snow) is described. New physically based parameterizations are developed for simulating homogeneous and heterogeneous ice nucleation, droplet activation, and the spectral index (width) of the droplet size spectra. Two versions of the scheme are described: one for application in high-resolution cloud models and the other for simulating grid-scale cloudiness in larger-scale models. The versions differ in their treatment of the supersaturation field and droplet nucleation. For the high-resolution approach, droplet nucleation is calculated from Kohler theory applied to a distribution of aerosol that activates at a given supersaturation. The resolved supersaturation field and condensation/deposition rates are predicted using a semianalytic approximation to the three-phase (vapor, ice, liquid) supersaturation equation. For the large-scale version of the scheme, it is assumed that the supersaturation field is not resolved and thus droplet activation is parameterized as a function of the vertical velocity and diabatic cooling rate. The vertical velocity includes a subgrid component that is parameterized in terms of the eddy diffusivity and mixing length. Droplet condensation is calculated using a quasi-steady, saturation adjustment approach. Evaporation/deposition onto the other water species is given by nonsteady vapor diffusion allowing excess vapor density relative to ice saturation.

Corresponding author address: Hugh Morrison, Dept. of Aerospace Engineering, University of Colorado, Boulder, CO 80309. Email: hugh@cloud.colorado.edu

Abstract

A new double-moment bulk microphysics scheme predicting the number concentrations and mixing ratios of four hydrometeor species (droplets, cloud ice, rain, snow) is described. New physically based parameterizations are developed for simulating homogeneous and heterogeneous ice nucleation, droplet activation, and the spectral index (width) of the droplet size spectra. Two versions of the scheme are described: one for application in high-resolution cloud models and the other for simulating grid-scale cloudiness in larger-scale models. The versions differ in their treatment of the supersaturation field and droplet nucleation. For the high-resolution approach, droplet nucleation is calculated from Kohler theory applied to a distribution of aerosol that activates at a given supersaturation. The resolved supersaturation field and condensation/deposition rates are predicted using a semianalytic approximation to the three-phase (vapor, ice, liquid) supersaturation equation. For the large-scale version of the scheme, it is assumed that the supersaturation field is not resolved and thus droplet activation is parameterized as a function of the vertical velocity and diabatic cooling rate. The vertical velocity includes a subgrid component that is parameterized in terms of the eddy diffusivity and mixing length. Droplet condensation is calculated using a quasi-steady, saturation adjustment approach. Evaporation/deposition onto the other water species is given by nonsteady vapor diffusion allowing excess vapor density relative to ice saturation.

Corresponding author address: Hugh Morrison, Dept. of Aerospace Engineering, University of Colorado, Boulder, CO 80309. Email: hugh@cloud.colorado.edu

Save
  • Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation, 2, Multiple aerosol types. J. Geophys. Res., 105 , 68376844.

    • Search Google Scholar
    • Export Citation
  • Abdul-Razzak, H., S. J. Ghan, and C. Rivera-Carpio, 1998: A parameterization of aerosol activation, 1, Single aerosol type. J. Geophys. Res., 103 , 61236131.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics and fractional cloudiness. Science, 237 , 10201022.

  • Beheng, K. D., 1994: A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 33 , 193206.

  • Bigg, E. K., 1953: The supercooling of water. Proc. Phys. Soc. London, 66B , 688694.

  • Borys, R. D., 1989: Studies of ice nucleation by arctic aerosol on AGASP-II. J. Atmos. Chem., 9 , 169185.

  • Charlson, R. J., J. H. Seinfeld, A. Nenes, M. Kulmala, A. Laaksonen, and M. C. Fachinini, 2001: Reshaping the theory of cloud formation. Science, 292 , 20252026.

    • Search Google Scholar
    • Export Citation
  • Coakley Jr., J. A., and C. D. Walsh, 2002: Limits to the aerosol indirect radiative effect derived from observations of ship tracks. J. Atmos. Sci., 59 , 668680.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge Meteor. Monogr., No. 43, Amer. Meteor. Soc. 2932.

  • Curry, J. A., 1986: Interactions among turbulence, radiation, and microphysics in Arctic stratus clouds. J. Atmos. Sci., 43 , 90106.

  • Curry, J. A., and Coauthors, 2000: FIRE Arctic Clouds Experiment. Bull. Amer. Meteor. Soc., 81 , 529.

  • DeMott, P. J., D. C. Rogers, and S. M. Kreidenweis, 1997: The susceptibility of ice formation in upper-tropospheric clouds to insoluble aerosol components. J. Geophys. Res., 102 , 1957519584.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., Y. Chen, S. M. Kreidenweis, D. C. Rogers, and D. E. Sherman, 1999: Ice formation by black carbon particles. Geophys. Res. Lett., 26 , 24292432.

    • Search Google Scholar
    • Export Citation
  • Deshler, T., 1982: Contact ice nucleation by submicron atmospheric aerosols. Ph.D. dissertation,  University of Wyoming, 107 pp.

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., B. Stevens, W. R. Cotton, and R. L. Walko, 1994: An explicit cloud microphysical/LES model designed to simulate the Twomey effect. Atmos. Res., 33 , 207233.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., W. R. Cotton, S. M. Kreidenweis, and J. T. Davis, 1999: Impact of giant cloud condensation nuclei on drizzle formation in marine stratocumulus: Implications for cloud radiative properties. J. Atmos. Sci., 56 , 41004117.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., W. L. Eberhard, D. E. Veron, and M. Prevedi, 2003: First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys. Res. Lett., 30 .1287, doi:10.1029/2002GL016633.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51 , 249280.

  • Fletcher, N. H., 1962: The Physics of Rainclouds. Cambridge University Press, 386 pp.

  • Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice microphysics in the CSU General Circulation Model. Part 1: Model description and simulated microphysical processes. J. Climate, 9 , 489529.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and R. C. Easter, 1992: Computationally efficient approximations to stratiform cloud microphysics parameterization. Mon. Wea. Rev., 120 , 15721582.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., L. R. Leung, and R. C. Easter, 1997: Prediction of cloud droplet number in a general circulation model. J. Geophys. Res., 102 , 2177721794.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and Coauthors, 2001: A physically-based estimate of radiative forcing by anthropogenic sulfate aerosol. J. Geophys. Res., 106 , 52795293.

    • Search Google Scholar
    • Export Citation
  • Girard, E., and J. A. Curry, 2001: Simulation of Arctic low-level clouds observed during the FIRE Arctic Clouds Experiment using a new bulk microphysics scheme. J. Geophys. Res., 106 , 1513915154.

    • Search Google Scholar
    • Export Citation
  • Hallet, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249 , 2628.

  • Harrington, J. Y., M. P. Meyers, R. L. Walko, and W. R. Cotton, 1995: Parameterization of ice crystal conversion process due to vapor deposition for mesoscale models using double-moment basis functions. Part I: Basic formulation and parcel model results. J. Atmos. Sci., 52 , 43444366.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., T. Reisen, W. R. Cotton, and S. M. Kreidenweis, 1999: Cloud resolving simulations of Arctic stratus. Part II: Transition-season clouds. Atmos. Res., 51 , 4575.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and L. M. Miloshevich, 1995: Relative humidity and temperature influences on cirrus formation and evolution: Observations from wave clouds and FIRE II. J. Atmos. Sci., 52 , 43024326.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., 1984: Cloud condensation nuclei measurements within clouds. J. Climate Appl. Meteor., 23 , 4251.

  • Ikawa, M., and K. Saito, 1991: Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI. Meteorological Institute Tech. Rep. 28, 238 pp.

  • Jensen, E. J., and Coauthors, 1998: Ice nucleation processes in upper-tropospheric wave clouds during SUCCESS. Geophys. Res. Lett., 25 , 13631366.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and Coauthors, 2005: Formation of a tropopause cirrus layer observed over Florida during CRYSTAL-FACE. J. Geophys. Res., 110 .D03208, doi:10.1029/2004JD004671.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth, 2000: Cloud resolving simulations of mixed-phase arctic stratus observed during BASE: Sensitivity to concentration of ice crystals and large-scale heat and moisture advection. J. Atmos. Sci., 57 , 21052117.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., G. Feingold, W. R. Cotton, and P. G. Duynkerke, 2001: Large-eddy simulation of entrainment of cloud condensation nuclei into the arctic boundary layer: May 18, 1998 FIRE/SHEBA case study. J. Geophys. Res., 106 , 1511315122.

    • Search Google Scholar
    • Export Citation
  • Junge, C. E., 1952: Die konstitution der atmospherischen aerosols. Ann. Meteor., 1 , 128135.

  • Khvorostyanov, V. I., 1995: Mesoscale processes of cloud formation, cloud-radiation and their modeling with explicit microphysics. Atmos. Res., 39 , 167.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and K. Sassen, 1998: Cirrus cloud simulation using explicit microphysics and radiation. Part I: Model description. J. Atmos. Sci., 55 , 18081821.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 1999a: A simple analytical model of aerosol properties with account for hygroscopic growth, Part 1, Equilibrium size spectra and CCN activity spectra. J. Geophys. Res., 104 , 21632174.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 1999b: Towards the theory of stochastic condensation in clouds. Part I: A general kinetic equation. J. Atmos. Sci., 56 , 39853996.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 1999c: Towards the theory of stochastic condensation in clouds. Part II: Analytical solutions of the gamma distribution type. J. Atmos. Sci., 56 , 39974013.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 2000: A new theory of heterogeneous ice nucleation for application in cloud and climate models. Geophys. Res. Lett., 27 , 40814084.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 2002: Terminal velocities of droplets and crystals: Power laws with continuous parameters over the size spectrum. J. Atmos. Sci., 59 , 18721884.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 2005: The theory of ice nucleation by heterogeneous freezing of deliquescent mixed CCN. Part II: Parcel model simulation. J. Atmos. Sci., 62 , 261285.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., J. A. Curry, J. O. Pinto, M. Shupe, B. A. Baker, and K. Sassen, 2001: Modeling with explicit spectral water and ice microphysics of a two-layer cloud system of altostratus and cirrus observed during the FIRE Arctic Clouds Experiment. J. Geophys. Res., 106 , 1509915112.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., H. Morrison, J. A. Curry, D. Baumgardner, and P. Lawson, 2005: High ice supersaturation and modes of ice nucleation in thin tropopause cirrus: Simulation of the 13 July CRYSTAL case. J. Geophys. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Kruger, S. K., Q. Fu, K. N. Liou, and H-N. S. Chin, 1995: Improvements of an ice-phase microphysics parameterization in numerical simulations of tropical convection. J. Appl. Meteor., 34 , 281287.

    • Search Google Scholar
    • Export Citation
  • Levkov, L., B. Rockel, H. Kapitza, and E. Raschke, 1992: 3D mesoscale numerical studies of cirrus and stratus clouds by their time and space evolution. Beitr. Phys. Atmos., 65 , 3558.

    • Search Google Scholar
    • Export Citation
  • Lin, Y-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Liu, J. Y., and H. D. Orville, 1969: Numerical modeling of precipitation and cloud shadow effects on mountain-induced cirrus. J. Atmos. Sci., 26 , 12831298.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fallspeeds and masses of solid precipitation particles. J. Geophys. Res., 79 , 21852197.

  • Lohmann, U., 2002: A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett., 29 .1052, doi:10.1029/2001GL014357.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., N. McFarlane, L. Levkov, K. Abdella, and F. Albers, 1999: Comparing different cloud schemes of a single column model by using mesoscale forcing and nudging technique. J. Climate, 12 , 438461.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., J. Humble, W. R. Leaitch, G. A. Isaac, and I. Gultepe, 2001: Simulation of ice clouds during FIRE ACE using the CCCMA single-column model. J. Geophys. Res., 106 , 1512315138.

    • Search Google Scholar
    • Export Citation
  • McCumber, M., W. K. Tao, J. Simpson, R. Penc, and S. T. Soong, 1991: Comparison of ice-phase microphysical parameterization schemes using numerical simulations of convection. J. Appl. Meteor., 30 , 9851004.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice nucleation parameterization in an explicit model. J. Appl. Meteor., 31 , 708721.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45 , 339.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and A. J. Heymsfield, 2005: Refinements in the treatment of ice particle terminal velocities: Highlighting aggregates. J. Atmos. Sci., 62 , 16371644.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. D. Shupe, and J. A. Curry, 2003: Modeling clouds observed at SHEBA using a bulk microphysics parameterization implemented into a single-column model. J. Geophys. Res., 108 .4255, doi:10.1029/2002JD002229.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, M. D. Shupe, and P. Zuidema, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part II: Single-column modeling of arctic clouds. J. Atmos. Sci., 62 , 16781693.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1990: Numerical modeling of the dynamical and microphysical evolution of an isolated convective cloud—The July 19 1981 CCOPE cloud. J. Meteor. Soc. Japan, 68 , 107128.

    • Search Google Scholar
    • Export Citation
  • Nenes, A., S. Ghan, H. Abdul-Razzak, P. Y. Chung, and J. H. Seinfeld, 2001: Kinetic limitations on cloud droplet formation and impact on cloud albedo. Tellus, 53 , 133149.

    • Search Google Scholar
    • Export Citation
  • Nenes, A., R. J. Charlson, M. C. Fachinni, M. Kulmala, A. Laaksonen, and J. H. Seinfeld, 2002: Can chemical effects on cloud droplet number rival the first indirect effect? Geophys. Res. Lett., 29 .1848, doi:10.1029/2002GL015295.

    • Search Google Scholar
    • Export Citation
  • Passarelli Jr., R. E., 1978: An approximate analytic model of the vapor deposition and aggregation growth of snowflakes. J. Atmos. Sci., 35 , 118124.

    • Search Google Scholar
    • Export Citation
  • Penner, J. E., and L. D. Rotstayn, 2001: Indirect aerosol forcing, quasi forcing, and climate response. J. Climate, 14 , 29602975.

  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Rangno, A. L., and P. V. Hobbs, 2001: Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice particle concentrations. J. Geophys. Res., 106 , 1506515075.

    • Search Google Scholar
    • Export Citation
  • Rasch, A., and A. Williamson, 1990: Computational aspects of moisture transport in global models. Quart. J. Roy. Meteor. Soc., 116 , 10711090.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 forecast model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., 1982: Field and laboratory studies of ice nucleation in winter orographic clouds. Ph.D. dissertation, University of Wyoming, 161 pp.

  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3d ed. Pergamon Press, 293 pp.

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder–feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40 , 11851206.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41 , 29492972.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and G. C. Dodd, 1989: Haze particle nucleation simulation in cirrus clouds, and application for numerical and lidar studies. J. Atmos. Sci., 46 , 30053014.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 1983: A fully multidimensional positive definite transport algorithm with small implicit diffusion. J. Comput. Phys., 54 , 325362.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., G. Feingold, W. R. Cotton, and R. L. Walko, 1996: Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus. J. Atmos. Sci., 53 , 9801006.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1959: The nuclei of natural cloud formation, II, The supersaturation in natural clouds and the variation of cloud droplet concentration. Geofis. Pura Appl., 43 , 243249.

    • Search Google Scholar
    • Export Citation
  • Vali, G., 1974: Contact ice nucleation by natural and artificial aerosols. Preprints, Conf. on Cloud Physics, Tuscon, AZ, Amer. Meteor. Soc., 34–37.

  • Walko, R., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmos. Res., 38 , 2962.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., J. T. Kiehl, V. Ramanathan, R. E. Dickinson, and J. J. Hack, 1987: Description of the NCAR Community Climate Model (CCM1). NCAR Tech. Note NCAR/TN-285+STR, 112 pp.

  • Wu, X., W. W. Grabowski, and M. W. Moncrieff, 1998: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface properties. Part I: Two-dimensional modeling study. J. Atmos. Sci., 55 , 26932714.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and D. A. Randall, 1996: Explicit simulation of cumulus ensembles with the GATE Phase III data: Comparison with observations. J. Atmos. Sci., 53 , 37103736.

    • Search Google Scholar
    • Export Citation
  • Young, K. C., 1974: The role of contact nucleation in ice phase initiation in clouds. J. Atmos. Sci., 31 , 768780.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4442 1668 130
PDF Downloads 3536 1345 96