A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part II: Single-Column Modeling of Arctic Clouds

H. Morrison Department of Aerospace Engineering, University of Colorado, Boulder, Colorado

Search for other papers by H. Morrison in
Current site
Google Scholar
PubMed
Close
,
J. A. Curry School of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by J. A. Curry in
Current site
Google Scholar
PubMed
Close
,
M. D. Shupe Cooperative Institute for Research in Environmental Sciences/NOAA ETL, Boulder, Colorado

Search for other papers by M. D. Shupe in
Current site
Google Scholar
PubMed
Close
, and
P. Zuidema Cooperative Institute for Research in Environmental Sciences/NOAA ETL, Boulder, Colorado

Search for other papers by P. Zuidema in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The new double-moment microphysics scheme described in Part I of this paper is implemented into a single-column model to simulate clouds and radiation observed during the period 1 April–15 May 1998 of the Surface Heat Budget of the Arctic (SHEBA) and First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment–Arctic Clouds Experiment (FIRE–ACE) field projects. Mean predicted cloud boundaries and total cloud fraction compare reasonably well with observations. Cloud phase partitioning, which is crucial in determining the surface radiative fluxes, is fairly similar to ground-based retrievals. However, the fraction of time that liquid is present in the column is somewhat underpredicted, leading to small biases in the downwelling shortwave and longwave radiative fluxes at the surface. Results using the new scheme are compared to parallel simulations using other microphysics parameterizations of varying complexity. The predicted liquid water path and cloud phase is significantly improved using the new scheme relative to a single-moment parameterization predicting only the mixing ratio of the water species. Results indicate that a realistic treatment of cloud ice number concentration (prognosing rather than diagnosing) is needed to simulate arctic clouds. Sensitivity tests are also performed by varying the aerosol size, solubility, and number concentration to explore potential cloud–aerosol–radiation interactions in arctic stratus.

Corresponding author address: Hugh Morrison, Dept. of Aerospace Engineering, University of Colorado, Boulder, CO 80309. Email: hugh@cloud.colorado.edu

Abstract

The new double-moment microphysics scheme described in Part I of this paper is implemented into a single-column model to simulate clouds and radiation observed during the period 1 April–15 May 1998 of the Surface Heat Budget of the Arctic (SHEBA) and First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment–Arctic Clouds Experiment (FIRE–ACE) field projects. Mean predicted cloud boundaries and total cloud fraction compare reasonably well with observations. Cloud phase partitioning, which is crucial in determining the surface radiative fluxes, is fairly similar to ground-based retrievals. However, the fraction of time that liquid is present in the column is somewhat underpredicted, leading to small biases in the downwelling shortwave and longwave radiative fluxes at the surface. Results using the new scheme are compared to parallel simulations using other microphysics parameterizations of varying complexity. The predicted liquid water path and cloud phase is significantly improved using the new scheme relative to a single-moment parameterization predicting only the mixing ratio of the water species. Results indicate that a realistic treatment of cloud ice number concentration (prognosing rather than diagnosing) is needed to simulate arctic clouds. Sensitivity tests are also performed by varying the aerosol size, solubility, and number concentration to explore potential cloud–aerosol–radiation interactions in arctic stratus.

Corresponding author address: Hugh Morrison, Dept. of Aerospace Engineering, University of Colorado, Boulder, CO 80309. Email: hugh@cloud.colorado.edu

Save
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics and fractional cloudiness. Science, 237 , 10201022.

  • Beesley, J. A., C. S. Bretherton, C. Jakob, E. L. Andreas, J. M. Intrieri, and T. A. Uttal, 2000: A comparison of cloud and boundary layer variables in the ECMWF forecast model with observations at the Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp. J. Geophys. Res., 105 , 1233712349.

    • Search Google Scholar
    • Export Citation
  • Borys, R. D., 1989: Studies of ice nucleation by arctic aerosol on AGASP-II. J. Atmos. Chem., 9 , 169185.

  • Briegleb, B. P., 1992: Delta-Eddington approximation for solar radiation in the NCAR Community Climate Model. J. Geophys. Res., 97 , 76037612.

    • Search Google Scholar
    • Export Citation
  • Carrio, G. G., H. Jiang, and W. R. Cotton, 2005: Impact of aerosol intrusions on the Arctic boundary layer clouds. Part I: 4 May 1998 case. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr. No. 43, Amer. Meteor. Soc., 29–32.

  • Curry, J. A., 1983: On the formation of polar continental air. J. Atmos. Sci., 40 , 22792292.

  • Curry, J. A., 1995: Interactions among aerosols, clouds, and climate of the Arctic Ocean. Sci. Total Environ., 160 , 777791.

  • Curry, J. A., and G. F. Herman, 1985: Relationships between large-scale heat and moisture budgets and the occurrence of Arctic stratus clouds. Mon. Wea. Rev., 113 , 14411457.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and E. E. Ebert, 1990: Sensitivity of the thickness of arctic sea ice to the optical properties of clouds. Ann. Glaciol., 14 , 4346.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., W. B. Rossow, and J. L. Schramm, 1996: Overview of Arctic cloud and radiation properties. J. Climate, 9 , 17311764.

  • Curry, J. A., and Coauthors, 2000: FIRE Arctic Clouds Experiment. Bull. Amer. Meteor. Soc., 81 , 529.

  • Dong, X., G. G. Mace, P. Minnis, and D. F. Young, 2001: Arctic stratus cloud properties and their effect on the surface radiation budget: Selected cases from FIRE ACE. J. Geophys. Res., 106 , 1529715312.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and J. A. Curry, 1992: A parameterization of ice-cloud optical properties for climate models. J. Geophys. Res., 97 , 38313836.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., W. L. Eberhard, D. E. Veron, and M. Prevedi, 2003: First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys. Res. Lett., 30 .1287, doi:10.1029/2002GL016633.

    • Search Google Scholar
    • Export Citation
  • Fleishauer, R. P., V. E. Larson, and T. H. Vonder Haar, 2002: Observed microphysical structure of midlevel, mixed-phase clouds. J. Atmos. Sci., 59 , 17791804.

    • Search Google Scholar
    • Export Citation
  • Fletcher, N. H., 1962: The Physics of Rainclouds. Cambridge University Press, 386 pp.

  • Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice microphysics in the CSU General Circulation Model. Part 1: Model description and simulated microphysical processes. J. Climate, 9 , 489529.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and S. Hollars, 2004: Testing mixed-phase cloud water vapor parameterizations with SHEBA/FIRE ACE observations. J. Atmos. Sci., 61 , 20832091.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., L. R. Leung, and R. C. Easter, 1997: Prediction of cloud droplet number in a general circulation model. J. Geophys. Res., 102 , 2177721794.

    • Search Google Scholar
    • Export Citation
  • Ghan, S., and Coauthors, 2001: A physically-based estimate of radiative forcing by anthropogenic sulfate aerosol. J. Geophys. Res., 106 , 52795293.

    • Search Google Scholar
    • Export Citation
  • Girard, E., and J. A. Curry, 2001: Simulation of Arctic low-level clouds observed during the FIRE Arctic Clouds Experiment using a new bulk microphysics scheme. J. Geophys. Res., 106 , 1513915154.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1995: A description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 138 pp.

  • Harrington, J. Y., T. Reisen, W. R. Cotton, and S. M. Kreidenweis, 1999: Cloud resolving simulations of Arctic stratus: Part II: Transition-season clouds. Atmos. Res., 51 , 4575.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1985: Ice particle concentrations in clouds. J. Atmos. Sci., 42 , 25232549.

  • Hobbs, P. V., and A. L. Rangno, 1990: Rapid development of ice particle concentrations in small polar maritime clouds. J. Atmos. Sci., 47 , 27102722.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1998: Microstructures of low and middle-level clouds over the Beaufort Sea. Quart. J. Roy. Meteor. Soc., 124 , 20352071.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. M., and B. A. Boville, 1993: Local versus non-local boundary-layer diffusion in a global climate model. J. Climate, 6 , 18251842.

    • Search Google Scholar
    • Export Citation
  • Ikawa, M., and K. Saito, 1991: Description of the nonhydrostatic model developed at the forecast research department of the MRI. Meteorological Institute Tech. Rep. 28, 238 pp.

  • Intrieri, J. M., M. D. Shupe, T. Uttal, and B. J. McCarty, 2002: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107 .8030, doi:10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weisbluth, 2000: Cloud resolving simulations of mixed-phase arctic stratus observed during BASE: Sensitivity to concentration of ice crystals and large-scale heat and moisture advection. J. Atmos. Sci., 57 , 21052117.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and K. Sassen, 1998: Cirrus cloud simulation using explicit micropohysics and radiation. Part 1: Model description. J. Atmos. Sci., 55 , 18081821.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and J. A. Curry, 2000: A new theory of heterogeneous ice nucleation for application in cloud and climate models. Geophys. Res. Lett., 27 , 40814084.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., G. A. Isaac, S. G. Cober, J. W. Strapp, and J. Hallett, 2003: Microphysical characterization of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129 , 3965.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, C. G. Schmitt, and T. L. Jensen, 2001: An overview of microphysical properties of Arctic clouds observed in May and July during FIRE ACE. J. Geophys. Res., 106 , 1498915014.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., 2002: A glaciation indirect effect caused by soot aerosols. Geophys. Res. Lett., 29 .1052, doi:10.1029/2001GL014357.

  • Lohmann, U., J. Humble, W. R. Leaitch, G. A. Isaac, and I. Gultepe, 2001: Simulation of ice clouds during FIRE ACE using the CCCMA single-column model. J. Geophys. Res., 106 , 1512315138.

    • Search Google Scholar
    • Export Citation
  • Lynch, A. H., W. L. Chapman, J. E. Walsh, and G. Weller, 1995: Development of a regional climate model of the western Arctic. J. Climate, 8 , 15551570.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice nucleation parameterization in an explicit model. J. Appl. Meteor., 31 , 708721.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM a validated correlated-k model for the longwave. J. Geophys. Res., 102 , 1666316682.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. O. Pinto, 2004: A new approach for obtaining advection profiles: Application to the SHEBA column. Mon. Wea. Rev., 132 , 687702.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. D. Shupe, and J. A. Curry, 2003: Modeling clouds observed at SHEBA using a bulk parameterization implemented into a single-column model. J. Geophys. Res., 108 .4255, doi:10.1029/2002JD002229.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics scheme for application in cloud and climate models. Part 1: Description. J. Atmos. Sci., 62 , 16651677.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1990: Numerical modeling of the dynamical and microphysical evolution of an isolated convective cloud—The 19 July 1981 CCOPE cloud. J. Meteor. Soc. Japan, 68 , 107128.

    • Search Google Scholar
    • Export Citation
  • Ohtake, T., 1993: Freezing points of H2SO4 aqueous solutions and formation of stratospheric ice clouds. Tellus, 45B , 138144.

  • Penner, J. E., and L. D. Rotstayn, 2001: Indirect aerosol forcing, quasi forcing, and climate response. J. Climate, 14 , 29602975.

  • Persson, P. O. G., C. W. Fairall, E. L. Andreas, P. S. Guest, and D. K. Perovich, 2002: Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res., 107 .8045, doi:10.1029/2000JC000705.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., 1998: Autumnal mixed-phase cloudy boundary layers in the Arctic. J. Atmos. Sci., 55 , 20162038.

  • Pinto, J. O., and J. A. Curry, 1995: Atmospheric convective plumes emanating from leads. 2, Microphysical and radiative processes. J. Geophys. Res., 100 , 46334642.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., J. A. Curry, and A. H. Lynch, 1999: Modeling cloud and radiation for the November 1997 period of SHEBA using a column climate model. J. Geophys. Res., 104 , 66616678.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Radke, L. F., J. F. Lyons, D. A. Hegg, and P. V. Hobbs, 1984: Airborne observations of arctic aerosols. Characterizations of arctic haze. Geophys. Res. Lett., 11 , 393396.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and D. G. Cripe, 1999: Alternative methods for specification of observed forcing in single-column models. J. Geophys. Res., 104 , 2452724546.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., K-M. Xu, R. J. C. Somerville, and S. Iacobellis, 1996: Single-column models and cloud ensemble models as links between observations and climate models. J. Climate, 9 , 16831697.

    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 1991: Ice particle concentrations and precipitation development in small polar maritime clouds. Quart. J. Roy. Meteor. Soc., 117 , 207241.

    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 2001: Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice particle concentrations. J. Geophys. Res., 106 , 1506515075.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and A. Tokay, 1991: An explanation for the existence of supercooled water at the top of cold clouds. J. Atmos. Sci., 48 , 10051023.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 forecast model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., P. J. DeMott, and S. M. Kreidenweis, 2001: Airborne measurements of tropospheric ice-nucleating aerosol particles in the Arctic spring. J. Geophys. Res., 106 , 1505315063.

    • Search Google Scholar
    • Export Citation
  • Schramm, J. L., M. M. Holland, J. A. Curry, and E. E. Ebert, 1997: Modeling the thermodynamics of a sea ice distribution, 1: Sensitivity to ice thickness resolution. J. Geophys. Res., 102 , 2307923091.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17 , 616628.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., T. Uttal, S. Y. Matrasov, and A. S. Frisch, 2001: Cloud water contents and hydrometeor sizes during the FIRE Arctic Clouds Experiment. J. Geophys. Res., 106 , 1501515028.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., 1989: A GCM parameterization for the shortwave optical properties of water clouds. J. Atmos. Sci., 46 , 14191427.

  • Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75 , 12011221.

    • Search Google Scholar
    • Export Citation
  • Tao, X., J. E. Walsh, and W. L. Chapman, 1996: An assessment of global climate model simulations of Arctic air temperatures. J. Climate, 9 , 10601076.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., B. M. Lesht, S. A. Clough, J. C. Liljegren, H. E. Revercomb, and D. C. Tobin, 2003: Dry bias and variability in Vaisala RS80-H radiosondes: The ARM experience. J. Atmos. Oceanic Technol., 20 , 117132.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34 , 11491152.

  • Uttal, T., and Coauthors, 2002: The surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83 , 255275.

  • Walsh, J. E., V. M. Kattsov, W. L. Chapman, V. Govorkova, and T. Pavlova, 2002: Comparison of Arctic climate simulations by uncoupled and coupled global models. J. Climate, 15 , 14291446.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. Cole, D. J. Carlson, E. R. Miller, K. Beierle, A. Paukkunen, and T. K. Lane, 2002: Corrections of humidity measurement errors from the Vaisala RS80 radiosonde—Application to TOGA COARE data. J. Atmos. Oceanic Technol., 19 , 9811002.

    • Search Google Scholar
    • Export Citation
  • Westwater, E. R., Y. Han, M. D. Shupe, and S. Y. Matrasov, 2001: Analysis of integrated cloud liquid water and precipitable water vapor retrievals from microwave radiometer during SHEBA. J. Geophys. Res., 106 , 3201932030.

    • Search Google Scholar
    • Export Citation
  • Wylie, D., 2001: Arctic weather during FIRE ACE. J. Geophys. Res., 106 , 1536315375.

  • Yum, S. S., and J. G. Hudson, 2001: Vertical distributions of cloud condensation nuclei spectra over the springtime Arctic Ocean. J. Geophys. Res., 106 , 1504515052.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and Coauthors, 2005: An arctic springtime mixed-phase cloud boundary layer observed during SHEBA. J. Atmos. Sci., 62 , 160176.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 749 317 23
PDF Downloads 507 145 8