Internal Atmospheric Dynamics and Tropical Indo-Pacific Climate Variability

Ben P. Kirtman George Mason University, Fairfax, Virginia, and Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Ben P. Kirtman in
Current site
Google Scholar
PubMed
Close
,
Kathy Pegion George Mason University, Fairfax, Virginia

Search for other papers by Kathy Pegion in
Current site
Google Scholar
PubMed
Close
, and
Saul M. Kinter Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Saul M. Kinter in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

One possible explanation for tropical sea surface temperature (SST) interannual variability is that it can be accurately described by a linear autoregressive model with damped coupled feedbacks and stochastic forcing. This autoregressive model can be viewed as a “null hypothesis” for tropical SST variability. This paper advances a new coupled general circulation model (CGCM) coupling strategy, called an interactive ensemble, as a method to test this null hypothesis. The design of the interactive ensemble procedure is to reduce the stochastic variability in the air–sea fluxes applied to the ocean component while retaining the deterministic component of the coupled feedbacks. The interactive ensemble procedure uses multiple realizations of the atmospheric GCM coupled to a single realization of the ocean GCM. The ensemble mean of the atmospheric GCM fluxes are applied to the ocean model thereby significantly reducing the variability due to internal atmospheric dynamics in the air–sea fluxes. If the null hypothesis is correct, the SST variability is reduced, and the autoregressive model defines how much the variability should be reduced. To test the null hypothesis, the interactive ensemble procedure is applied to a heuristic coupled model. Then the heuristic coupled model is used to interpret the CGCM interactive ensemble results with respect to (i) SST variance and (ii) how the amplitude of atmospheric internal dynamics depends on the evolving background SST anomaly. There are significant regions where the heuristic model fails to reproduce the CGCM results, suggesting that aspects of tropical Indo-Pacific variability in the CGCM cannot be explained by damped coupled feedbacks and stochastic forcing. These regions are largely coincident with regions of large convective anomalies. Surprisingly, significant regions were found in the tropical eastern Pacific where the variability due to internal ocean dynamics cannot be neglected.

Corresponding author address: Ben P. Kirtman, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705. Email: kirtman@cola.iges.org

Abstract

One possible explanation for tropical sea surface temperature (SST) interannual variability is that it can be accurately described by a linear autoregressive model with damped coupled feedbacks and stochastic forcing. This autoregressive model can be viewed as a “null hypothesis” for tropical SST variability. This paper advances a new coupled general circulation model (CGCM) coupling strategy, called an interactive ensemble, as a method to test this null hypothesis. The design of the interactive ensemble procedure is to reduce the stochastic variability in the air–sea fluxes applied to the ocean component while retaining the deterministic component of the coupled feedbacks. The interactive ensemble procedure uses multiple realizations of the atmospheric GCM coupled to a single realization of the ocean GCM. The ensemble mean of the atmospheric GCM fluxes are applied to the ocean model thereby significantly reducing the variability due to internal atmospheric dynamics in the air–sea fluxes. If the null hypothesis is correct, the SST variability is reduced, and the autoregressive model defines how much the variability should be reduced. To test the null hypothesis, the interactive ensemble procedure is applied to a heuristic coupled model. Then the heuristic coupled model is used to interpret the CGCM interactive ensemble results with respect to (i) SST variance and (ii) how the amplitude of atmospheric internal dynamics depends on the evolving background SST anomaly. There are significant regions where the heuristic model fails to reproduce the CGCM results, suggesting that aspects of tropical Indo-Pacific variability in the CGCM cannot be explained by damped coupled feedbacks and stochastic forcing. These regions are largely coincident with regions of large convective anomalies. Surprisingly, significant regions were found in the tropical eastern Pacific where the variability due to internal ocean dynamics cannot be neglected.

Corresponding author address: Ben P. Kirtman, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705. Email: kirtman@cola.iges.org

Save
  • Barsugli, J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55 , 473493.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci., 45 , 28892919.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., J. D. Neelin, and D. Gutzler, 1997: Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J. Climate, 10 , 14731487.

    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., 1992: Delta–Eddington approximation for solar radiation in the NCAR community climate model. J. Geophys. Res., 97 , 76037612.

    • Search Google Scholar
    • Export Citation
  • Chang, P., B. Wang, T. Li, and L. Ji, 1994: Interactions between the seasonal cycle and the Southern Oscillation-frequency entrainment and chaos in an intermediate coupled ocean-atmosphere model. Geophys. Res. Lett., 21 , 28172820.

    • Search Google Scholar
    • Export Citation
  • Chen, Y-Q., D. S. Battisti, T. N. Palmer, J. Barsugli, and E. S. Sarachik, 1997: A study of the predictability of tropical Pacific SST in a coupled atmosphere–ocean model using singular vector analysis: The role of the annual cycle and the ENSO cycle. Mon. Wea. Rev., 125 , 831845.

    • Search Google Scholar
    • Export Citation
  • DeWitt, D. G., 1996: The effect of the cumulus convection on the climate of the COLA general circulation model. COLA Tech. Rep. 27, 69 pp. [Available from COLA, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

  • DeWitt, D. G., and E. K. Schneider, 1996: The Earth radiation budget as simulated by the COLA GCM. COLA Tech. Rep. 35, 39 pp. [Available from COLA, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

  • Eckert, C., and M. Latif, 1997: Predictability of a stochastically forced hybrid coupled model of El Niño. J. Climate, 10 , 14881504.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and S. G. H. Philander, 2001: A stability analysis of tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J. Climate, 14 , 30863101.

    • Search Google Scholar
    • Export Citation
  • Flügel, M., and P. Chang, 1996: Impact of dynamical and stochastic processes on the predictability of ENSO. Geophys. Res. Lett., 23 , 20892092.

    • Search Google Scholar
    • Export Citation
  • Flügel, M., P. Chang, and C. Penland, 2004: The role of stochastic forcing in modulating ENSO predictability. J. Climate, 17 , 31253140.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Harshvardhan, and Davis, R., D. A. Randall, and T. G. Corsetti, 1987: A fast radiation parameterization for general circulation models. J. Geophys. Res., 92 , 10091016.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Jin, F. F., J. D. Neelin, and M. Ghil, 1994: El Niño on the devil’s staircase: Annual subharmonic steps to chaos. Science, 264 , 7072.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437472.

  • Kiehl, J. T., J. J. Hack, and B. P. Briegleb, 1994: The simulated earth radiation budget of the National Center for Atmospheric Research community climate model CCM2 and comparisons with the Earth Radiation Budget Experiment (ERBE). J. Geophys. Res., 99 , 2081520827.

    • Search Google Scholar
    • Export Citation
  • Kinter III, J. L., J. Shukla, L. Marx, and E. K. Schneider, 1988: A simulation of winter and summer circulations with the NMC global spectral model. J. Atmos. Sci., 45 , 24682522.

    • Search Google Scholar
    • Export Citation
  • Kinter III, J. L., and Coauthors, 1997: The COLA atmosphere–biosphere general circulation model volume 1: Formulation. COLA Tech. Rep. 51, 46 pp. [Available from COLA, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705.].

  • Kirtman, B. P., 1997: Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J. Climate, 10 , 16901704.

  • Kirtman, B. P., 2003: The COLA anomaly coupled model: Ensemble ENSO prediction. Mon. Wea. Rev., 131 , 23242341.

  • Kirtman, B. P., and P. S. Schopf, 1998: Decadal variability in ENSO predictability and prediction. J. Climate, 11 , 28042822.

  • Kirtman, B. P., and J. Shukla, 2000: Influence of the Indian summer monsoon on ENSO. Quart. J. Roy. Meteor. Soc., 126 , 213239.

  • Kirtman, B. P., and J. Shukla, 2002: Interactive coupled ensemble: A new coupling strategy for GCMs. Geophys. Res. Lett., 29 , 10291032.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., J. Shukla, B. Huang, Z. Zhu, and E. K. Schneider, 1997: Multiseasonal prediction with a coupled tropical ocean–global atmosphere system. Mon. Wea. Rev., 125 , 789808.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., Y. Fan, and E. K. Schneider, 2002: The COLA global coupled and anomaly coupled ocean–atmosphere GCM. J. Climate, 15 , 23012320.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., and A. M. Moore, 1997: A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J. Atmos. Sci., 54 , 753767.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., Y. Tang, and A. M. Moore, 2003: The calculation of climatically relevant singular vectors in the presence of weather noise as applied to the ENSO problem. J. Atmos. Sci., 60 , 28562868.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Liess, S., L. Bengtsson, and K. Arpe, 2001: The Madden–Julian oscillation in the ECHAM4/OPYC3 CGCM. MPI Tech. Rep. 319, 29 pp. [Available from MPI, Bundesstrasse 55, D-20146 Hamburg, Germany.].

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Miyakoda, K., and J. Sirutis, 1977: Comparative integrations of global spectral models with various parameterized processes of sub-grid scale vertical transports. Beitr. Phys. Atmos., 50 , 445480.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1996: The dynamics of error growth and predictability in a coupled model of ENSO. Quart. J. Roy. Meteor. Soc., 122 , 14051446.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and R. Kleeman, 1999a: The nonnormal nature of El Niño and intraseasonal variability. J. Climate, 12 , 29652982.

  • Moore, A. M., and R. Kleeman, 1999b: Stochastic forcing of ENSO by the intraseasonal oscillation. J. Climate, 12 , 11991220.

  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Münnich, M., M. A. Cane, and S. E. Zebiak, 1991: A study of self-excited oscillations in a tropical ocean–atmosphere system. Part II: Nonlinear cases. J. Atmos. Sci., 48 , 12381248.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1998: MOM 3.0 manual. NOAA/Geophysical Fluid Dynamics Laboratory, 638 pp.

  • Penland, C., and L. Matrosova, 1994: A balance condition for stochastic numerical models with application to the El Niño–Southern Oscillation. J. Climate, 7 , 13521372.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8 , 19992024.

  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12 , 11551158.

  • Schneider, E. K., 2002: Causes of differences between the equatorial Pacific as simulated by two coupled GCMs. J. Climate, 15 , 23012320.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev., 91 , 99164.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45 , 32833287.

  • Thompson, C. J., and D. S. Battisti, 2000: A linear stochastic dynamical model of ENSO. Part I: Model development. J. Climate, 13 , 28182832.

    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., and D. S. Battisti, 2001: A linear stochastic dynamical model of ENSO. Part II: Analysis. J. Climate, 14 , 445466.

  • Trenberth, K. E., W. G. Large, and J. G. Olson, 1990: The mean annual cycle in global ocean wind stress. J. Phys. Oceanogr., 20 , 17421760.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., M. A. Cane, and S. E. Zebiak, 1995: Irregularity and locking to the seasonal cycle in an ENSO prediction model as explained by the quasi-periodicity route to chaos. J. Atmos. Sci., 52 , 293306.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54 , 7286.

  • Wang, B., A. Barcilon, and Z. Fang, 1999: Stochastic dynamics of El Niño–Southern Oscillation. J. Atmos. Sci., 56 , 523.

  • Waliser, D. E., K. M. Lau, and J. H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden–Julian oscillation: A model perturbation experiment. J. Atmos. Sci., 56 , 333358.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2003: On the impacts of the Indian summer monsoon on ENSO in a coupled GCM. Quart. J. Roy. Meteor. Soc., 129 , 34393468.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2004a: Impacts of the Indian Ocean on the Indian summer monsoon–ENSO relationship. J. Climate, 17 , 30373054.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2004b: Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J. Climate, 17 , 40194031.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., E. K. Schneider, and B. P. Kirtman, 2004: Causes of low frequency North Atlantic SST variability in a coupled GCM. Geophys. Res. Lett., 31 .L09210, doi:10.1029/2004GL019548.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. A. Cane, S. E. Zebiak, and M. B. Blumenthal, 1994: On the prediction of ENSO: A study with a low-order Markov model. Tellus, 46A , 512528.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. A. Cane, and S. E. Zebiak, 1997: Predictability of a coupled model of ENSO using singular vector analysis. Part I: Optimal growth in seasonal background and ENSO cycles. Mon. Wea. Rev., 125 , 20432056.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., and B. P. Kirtman, 2004a: The impact of internal atmospheric variability on the North Pacific SST variability. Climate Dyn., 22 .doi:10.1007/s00382-004-0399-8.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., and B. P. Kirtman, 2004b: Decadal North Pacific sea surface temperature variability and the associated global climate anomalies in a coupled general circulation model. J. Geophys. Res., 109 .D20113, doi:10.1029/2004JD004785.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., and B. P. Kirtman, 2004c: Tropical Pacific decadal variability and ENSO amplitude modulation in a CGCM. J. Geophys. Res., 109 .C11009, doi:10.1029/2004JC002442.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1989: On the 30–60 day oscillation and the prediction of El Niño. J. Climate, 2 , 13811387.

  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southeren Oscillation. Mon. Wea. Rev., 115 , 22622278.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1758 1495 34
PDF Downloads 203 47 10