Simulations of the Atmospheric General Circulation Using a Cloud-Resolving Model as a Superparameterization of Physical Processes

Marat Khairoutdinov Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Marat Khairoutdinov in
Current site
Google Scholar
PubMed
Close
,
David Randall Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by David Randall in
Current site
Google Scholar
PubMed
Close
, and
Charlotte DeMott Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Charlotte DeMott in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Traditionally, the effects of clouds in GCMs have been represented by semiempirical parameterizations. Recently, a cloud-resolving model (CRM) was embedded into each grid column of a realistic GCM, the NCAR Community Atmosphere Model (CAM), to serve as a superparameterization (SP) of clouds. Results of the standard CAM and the SP-CAM are contrasted, both using T42 resolution (2.8° × 2.8° grid), 26 vertical levels, and up to a 500-day-long simulation. The SP was based on a two-dimensional (2D) CRM with 64 grid columns and 24 levels collocated with the 24 lowest levels of CAM. In terms of the mean state, the SP-CAM produces quite reasonable geographical distributions of precipitation, precipitable water, top-of-the-atmosphere radiative fluxes, cloud radiative forcing, and high-cloud fraction for both December–January–February and June–July–August. The most notable and persistent precipitation bias in the western Pacific, during the Northern Hemisphere summer of all the SP-CAM runs with 2D SP, seems to go away through the use of a small-domain three-dimensional (3D) SP with the same number of grid columns as the 2D SP, but arranged in an 8 × 8 square with identical horizontal resolution of 4 km. Two runs with the 3D SP have been carried out, with and without explicit large-scale momentum transport by convection. Interestingly, the double ITCZ feature seems to go away in the run that includes momentum transport.

The SP improves the diurnal variability of nondrizzle precipitation frequency over the standard model by precipitating most frequently during late afternoon hours over the land, as observed, while the standard model maximizes its precipitation frequency around local solar noon. Over the ocean, both models precipitate most frequently in the early morning hours as observed. The SP model also reproduces the observed global distribution of the percentage of days with nondrizzle precipitation rather well. In contrast, the standard model tends to precipitate more frequently, on average by about 20%–30%. The SP model seems to improve the convective intraseasonal variability over the standard model. Preliminary results suggest that the SP produces more realistic variability of such fields as 200-mb wind and OLR, relative to the control, including the often poorly simulated Madden–Julian oscillation (MJO).

Corresponding author address: Marat Khairoutdinov, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: marat@atmos.colostate.edu

Abstract

Traditionally, the effects of clouds in GCMs have been represented by semiempirical parameterizations. Recently, a cloud-resolving model (CRM) was embedded into each grid column of a realistic GCM, the NCAR Community Atmosphere Model (CAM), to serve as a superparameterization (SP) of clouds. Results of the standard CAM and the SP-CAM are contrasted, both using T42 resolution (2.8° × 2.8° grid), 26 vertical levels, and up to a 500-day-long simulation. The SP was based on a two-dimensional (2D) CRM with 64 grid columns and 24 levels collocated with the 24 lowest levels of CAM. In terms of the mean state, the SP-CAM produces quite reasonable geographical distributions of precipitation, precipitable water, top-of-the-atmosphere radiative fluxes, cloud radiative forcing, and high-cloud fraction for both December–January–February and June–July–August. The most notable and persistent precipitation bias in the western Pacific, during the Northern Hemisphere summer of all the SP-CAM runs with 2D SP, seems to go away through the use of a small-domain three-dimensional (3D) SP with the same number of grid columns as the 2D SP, but arranged in an 8 × 8 square with identical horizontal resolution of 4 km. Two runs with the 3D SP have been carried out, with and without explicit large-scale momentum transport by convection. Interestingly, the double ITCZ feature seems to go away in the run that includes momentum transport.

The SP improves the diurnal variability of nondrizzle precipitation frequency over the standard model by precipitating most frequently during late afternoon hours over the land, as observed, while the standard model maximizes its precipitation frequency around local solar noon. Over the ocean, both models precipitate most frequently in the early morning hours as observed. The SP model also reproduces the observed global distribution of the percentage of days with nondrizzle precipitation rather well. In contrast, the standard model tends to precipitate more frequently, on average by about 20%–30%. The SP model seems to improve the convective intraseasonal variability over the standard model. Preliminary results suggest that the SP produces more realistic variability of such fields as 200-mb wind and OLR, relative to the control, including the often poorly simulated Madden–Julian oscillation (MJO).

Corresponding author address: Marat Khairoutdinov, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523. Email: marat@atmos.colostate.edu

Save
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17 , 24932525.

  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, ATEX and Arctic Air mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M., and Coauthors, 2001: The Community Climate System Model. Bull. Amer. Meteor. Soc., 82 , 23572376.

  • Cole, J. N. S., H. W. Barker, D. A. Randall, M. F. Khairoutdinov, and E. E. Clothiaux, 2005: Global consequences of interactions between clouds and radiation at scales unresolved by global climate models. Geophys. Res. Lett., 32 .L06703, doi:10.1029/2004GL020945.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14 , 11121128.

  • Grabowski, W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 58 , 978997.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., X. Wu, M. W. Moncrieff, and W. D. Hall, 1998: Cloud-resolving modeling of cloud systems during Phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55 , 32643282.

    • Search Google Scholar
    • Export Citation
  • Imaoka, K., and R. W. Spencer, 2000: Diurnal variation of precipitation over the tropical oceans observed by TRMM/TMI combined with SSM/I. J. Climate, 13 , 41494158.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett., 28 , 36173620.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM Summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60 , 607625.

    • Search Google Scholar
    • Export Citation
  • Lim, G-H., and A-S. Suh, 2000: Diurnal and semidiurnal variations in the time series of 3-hourly assimilated precipitation by NASA GEOS-1. J. Climate, 13 , 29232940.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Randall, D. A., M. F. Khairoutdinov, A. Arakawa, and W. W. Grabowski, 2003a: Breaking the cloud-parameterization deadlock. Bull. Amer. Meteor. Soc., 84 , 15471564.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2003b: Confronting models with data: The GEWEX Cloud Systems Study. Bull. Amer. Meteor. Soc., 84 , 455469.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12 , 325357.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., and J. G. Olson, 1994: Climate simulations with a semi-Lagrangian version of the NCAR community climate model. Mon. Wea. Rev., 122 , 15941610.

    • Search Google Scholar
    • Export Citation
  • Wu, X., X-Z. Liang, and G. J. Zhang, 2003: Seasonal migration of ITCZ precipitation across the Equator: Why can’t GCMs simulate it? Geophys. Res. Lett., 30 , 18241827.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9 , 840858.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and D. A. Randall, 1996: Explicit simulation of cumulus ensembles with the GATE Phase III data: Comparison with observations. J. Atmos. Sci., 53 , 37103736.

    • Search Google Scholar
    • Export Citation
  • Xu, K-M., and Coauthors, 2002: An intercomparison of cloud-resolving models with the Atmospheric Radiation Measurement summer 1997 Intensive Observation Period data. Quart. J. Roy. Meteor. Soc., 128 , 593624.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4240 1946 47
PDF Downloads 940 163 19