Explicit Filtering and Reconstruction Turbulence Modeling for Large-Eddy Simulation of Neutral Boundary Layer Flow

Fotini Katopodes Chow Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental Engineering, Stanford University, Stanford, California

Search for other papers by Fotini Katopodes Chow in
Current site
Google Scholar
PubMed
Close
,
Robert L. Street Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental Engineering, Stanford University, Stanford, California

Search for other papers by Robert L. Street in
Current site
Google Scholar
PubMed
Close
,
Ming Xue School of Meteorology, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Ming Xue in
Current site
Google Scholar
PubMed
Close
, and
Joel H. Ferziger Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental Engineering, Stanford University, Stanford, California

Search for other papers by Joel H. Ferziger in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Standard turbulence closures for large-eddy simulations of atmospheric flow based on finite-difference or finite-volume codes use eddy-viscosity models and hence ignore the contribution of the resolved subfilter-scale stresses. These eddy-viscosity closures are unable to produce the expected logarithmic region near the surface in neutral boundary layer flows. Here, explicit filtering and reconstruction are used to improve the representation of the resolvable subfilter-scale (RSFS) stresses, and a dynamic eddy-viscosity model is used for the subgrid-scale (SGS) stresses. Combining reconstruction and eddy-viscosity models yields a sophisticated (and higher order) version of the well-known mixed model of Bardina et al.; the explicit filtering and reconstruction procedures clearly delineate the contribution of the RSFS and SGS motions. A near-wall stress model is implemented to supplement the turbulence models and account for the stress induced by filtering near a solid boundary as well as the effect of the large grid aspect ratio. Results for neutral boundary layer flow over a rough wall using the combined dynamic reconstruction model and the near-wall stress model show excellent agreement with similarity theory logarithmic velocity profiles, a significant improvement over standard eddy-viscosity closures. Stress profiles also exhibit the expected pattern with increased reconstruction level.

Corresponding author address: Fotini Katopodes Chow, Atmospheric Science Division, Lawrence Livermore National Laboratory, P.O. Box 808, L-103, Livermore, CA 94551. Email: katopodes@stanfordalumni.org

Abstract

Standard turbulence closures for large-eddy simulations of atmospheric flow based on finite-difference or finite-volume codes use eddy-viscosity models and hence ignore the contribution of the resolved subfilter-scale stresses. These eddy-viscosity closures are unable to produce the expected logarithmic region near the surface in neutral boundary layer flows. Here, explicit filtering and reconstruction are used to improve the representation of the resolvable subfilter-scale (RSFS) stresses, and a dynamic eddy-viscosity model is used for the subgrid-scale (SGS) stresses. Combining reconstruction and eddy-viscosity models yields a sophisticated (and higher order) version of the well-known mixed model of Bardina et al.; the explicit filtering and reconstruction procedures clearly delineate the contribution of the RSFS and SGS motions. A near-wall stress model is implemented to supplement the turbulence models and account for the stress induced by filtering near a solid boundary as well as the effect of the large grid aspect ratio. Results for neutral boundary layer flow over a rough wall using the combined dynamic reconstruction model and the near-wall stress model show excellent agreement with similarity theory logarithmic velocity profiles, a significant improvement over standard eddy-viscosity closures. Stress profiles also exhibit the expected pattern with increased reconstruction level.

Corresponding author address: Fotini Katopodes Chow, Atmospheric Science Division, Lawrence Livermore National Laboratory, P.O. Box 808, L-103, Livermore, CA 94551. Email: katopodes@stanfordalumni.org

Save
  • Andren, A., A. R. Brown, J. Graf, P. J. Mason, C-H. Moeng, F. T. M. Nieuwstadt, and U. Schumann, 1994: Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes. Quart. J. Roy. Meteor. Soc., 120 , 1457–1484.

    • Search Google Scholar
    • Export Citation
  • Balaras, E., C. Benocci, and U. Piomelli, 1995: Finite-difference computations of high Reynolds number flows using the dynamic subgrid-scale model. Theor. Comput. Fluid Dyn., 7 , 207–216.

    • Search Google Scholar
    • Export Citation
  • Bardina, J., J. H. Ferziger, and W. C. Reynolds, 1983: Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows. Tech. Rep. TF-19, Department of Mechanical Engineering, Stanford University, 97 pp.

  • Blackadar, A. K., and H. Tennekes, 1968: Asymptotic similarity in neutral barotropic planetary boundary layers. J. Atmos. Sci., 25 , 1015–1020.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., J. M. Hobson, and N. Wood, 2001: Large-eddy simulation of neutral turbulent flow over rough sinusoidal ridges. Bound.-Layer Meteor., 98 , 411–441.

    • Search Google Scholar
    • Export Citation
  • Carati, D., G. S. Winckelmans, and H. Jeanmart, 2001: On the modelling of the subgrid-scale and filtered-scale stress tensors in large-eddy simulation. J. Fluid Mech., 441 , 119–138.

    • Search Google Scholar
    • Export Citation
  • Carlotti, P., 2002: Two-point properties of atmospheric turbulence very close to the ground: Comparison of a high resolution LES with theoretical models. Bound.-Layer Meteor., 104 , 381–410.

    • Search Google Scholar
    • Export Citation
  • Cederwall, R. T., 2001: Large-eddy simulation of the evolving stable boundary layer over flat terrain. Ph.D. dissertation, Stanford University, 231 pp.

  • Chow, F. K., 2004: Subfilter-scale turbulence modeling for large-eddy simulation of the atmospheric boundary layer over complex terrain. Ph.D. dissertation, Stanford University, 339 pp.

  • Chow, F. K., and R. L. Street, 2002: Modeling unresolved motions in LES of field-scale flows. Preprints, 15th Symp. Boundary Layer Turbulence, Wagenigen, Netherlands, Amer. Meteor. Soc., 432–435.

  • Chow, F. K., and P. Moin, 2003: A further study of numerical errors in large-eddy simulations. J. Comput. Phys., 184 , 366–380.

  • Clark, R. A., J. H. Ferziger, and W. C. Reynolds, 1977: Evaluation of subgrid-scale turbulence models using a fully simulated turbulent flow. Tech. Rep. TF-9, Department of Mechanical Engineering, Stanford University, 119 pp.

  • Coleman, G. N., 1999: Similarity statistics from a direct numerical simulation of the neutrally stratified planetary boundary layer. J. Atmos. Sci., 56 , 891–900.

    • Search Google Scholar
    • Export Citation
  • Cui, A., 1999: On the parallel computation of turbulent rotating stratified flows. Ph.D. dissertation, Stanford University, 256 pp.

  • Cushman-Roisin, B., 1994: Introduction to Geophysical Fluid Dynamics. Prentice Hall, 320 pp.

  • Deardorff, J. W., 1971: On the magnitude of the subgrid scale eddy coefficient. J. Comput. Phys., 7 , 120–133.

  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a 3-dimensional model. Bound.-Layer Meteor., 18 , 495–527.

  • Ding, F., S. P. Arya, and Y-L. Lin, 2001: Large-eddy simulations of the atmospheric boundary layer using a new subgrid-scale model. Part I: Slightly unstable and neutral cases. Environ. Fluid Mech., 1 , 29–47.

    • Search Google Scholar
    • Export Citation
  • Domaradzki, J. A., and N. A. Adams, 2002: Direct modelling of subgrid scales of turbulence in large eddy simulations. J. Turb., 3 .024, 1–19. [Available online at http://www.iop.org/EJ/journal/JoT.].

    • Search Google Scholar
    • Export Citation
  • Dubrulle, B., J. P. Laval, P. P. Sullivan, and J. Werne, 2002: A new dynamical subgrid model for the planetary surface layer. Part I: The model and a priori tests. J. Atmos. Sci., 59 , 861–876.

    • Search Google Scholar
    • Export Citation
  • Esau, I., 2004: Simulation of Ekman boundary layers by large eddy model with dynamic mixed subfilter closure. Environ. Fluid Mech., 4 , 273–303.

    • Search Google Scholar
    • Export Citation
  • Germano, M., U. Piomelli, P. Moin, and W. H. Cabot, 1991: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, 3 , 1760–1765.

    • Search Google Scholar
    • Export Citation
  • Geurts, B. J., 1997: Inverse modeling for large-eddy simulation. Phys. Fluids, 9 , 3585–3587.

  • Ghosal, S., 1996: An analysis of numerical errors in large-eddy simulations of turbulence. J. Comput. Phys., 125 , 187–206.

  • Ghosal, S., and P. Moin, 1995: The basic equations for the large eddy simulation of turbulent flows in complex geometry. J. Comput. Phys., 118 , 24–37.

    • Search Google Scholar
    • Export Citation
  • Gullbrand, J., and F. K. Chow, 2003: The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mech., 495 , 323–341.

    • Search Google Scholar
    • Export Citation
  • Hughes, T. J. R., L. Mazzei, A. A. Oberai, and A. A. Wray, 2001a: The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence. Phys. Fluids, 13 , 505–512.

    • Search Google Scholar
    • Export Citation
  • Hughes, T. J. R., A. A. Oberai, and L. Mazzei, 2001b: Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys. Fluids, 13 , 1784–1799.

    • Search Google Scholar
    • Export Citation
  • Iliescu, T., and P. F. Fischer, 2003: Large eddy simulation of turbulent channel flows by the rational large eddy simulation model. Phys. Fluids, 15 , 3036–3047.

    • Search Google Scholar
    • Export Citation
  • Jordan, S. A., 1999: A large-eddy simulation methodology in generalized curvilinear coordinates. J. Comput. Phys., 148 , 322–340.

  • Juneja, A., and J. G. Brasseur, 1999: Characteristics of subgrid-resolved-scale dynamics in anistropic turbulence, with application to rough-wall boundary layers. Phys. Fluids, 11 , 3054–3068.

    • Search Google Scholar
    • Export Citation
  • Katopodes, F. V., R. L. Street, and J. H. Ferziger, 2000a: Subfilter-scale scalar transport for large-eddy simulation. Preprints, 14th Symp. on Boundary Layers and Turbulence, Aspen, CO, Amer. Meteor. Soc., 472–475.

  • Katopodes, F. V., R. L. Street, and J. H. Ferziger, 2000b: A theory for the subfilter-scale model in large-eddy simulation. Tech. Rep. 2000-K1, Environmental Fluid Mechanics Laboratory, Stanford University, 19 pp.

  • Khanna, S., and J. G. Brasseur, 1997: Analysis of Monin-Obukhov similarity from large-eddy simulation. J. Fluid Mech., 345 , 251–286.

    • Search Google Scholar
    • Export Citation
  • Kosović, B., 1997: Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J. Fluid Mech., 336 , 151–182.

    • Search Google Scholar
    • Export Citation
  • Kravchenko, A. G., P. Moin, and R. Moser, 1996: Zonal embedded grids for numerical simulations of wall-bounded turbulent flows. J. Comput. Phys., 127 , 412–423.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1992: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids, 4 , 633–635.

  • Lund, T. S., 1997: On the use of discrete filters for large eddy simulation. Annual Research Briefs, Center for Turbulence Research, NASA Ames–Stanford University, 83–95.

  • Mason, P. J., and D. J. Thomson, 1992: Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech., 242 , 51–78.

    • Search Google Scholar
    • Export Citation
  • Meneveau, C., and J. Katz, 2000: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech., 32 , 1–32.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41 , 2052–2062.

    • Search Google Scholar
    • Export Citation
  • Moin, P., 2001: Fundamentals of Engineering Numerical Analysis. Cambridge University Press, 224 pp.

  • Nakayama, A., and K. Sakio, 2002: Simulation of flows over wavy rough boundaries. Annual Research Briefs, Center for Turbulence Research, NASA Ames–Stanford University, 313–324.

  • Nakayama, A., and K. Sakio, 2004: Filtering and large eddy simulation of turbulent flow over complex boundary. Annu. J. Hydraul. Eng., 48 , 1237–1242.

    • Search Google Scholar
    • Export Citation
  • Nakayama, A., K. Hori, and R. L. Street, 2004: Filtering and large eddy simulation of flow over irregular rough surface. Proc. 2004 Summer Program, Center for Turbulence Research, Stanford, CA, NASA Ames–Stanford University, 145–156.

  • Patton, E. G., K. J. Davis, M. C. Barth, and P. P. Sullivan, 2001: Decaying scalars emitted by a forest canopy: a numerical study. Bound.-Layer Meteor., 100 , 91–129.

    • Search Google Scholar
    • Export Citation
  • Porté-Agel, F., C. Meneveau, and M. B. Parlange, 2000: A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J. Fluid Mech., 415 , 261–284.

    • Search Google Scholar
    • Export Citation
  • Porté-Agel, F., M. B. Parlange, C. Meneveau, and W. E. Eichinger, 2001: A priori field study of the subgrid-scale heat fluxes and dissipation in the atmospheric surface layer. J. Atmos. Sci., 58 , 2673–2698.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J. L., F. Mahe, and P. Carlotti, 2001: A simple and general subgrid model suitable both for surface layer and free-stream turbulence. Bound.-Layer Meteor., 101 , 375–408.

    • Search Google Scholar
    • Export Citation
  • Sarghini, F., U. Piomelli, and E. Balaras, 1999: Scale-similar models for large-eddy simulations. Phys. Fluids, 11 , 1596–1607.

  • Scotti, A., C. Meneveau, and M. Fatica, 1997: Dynamic Smagorinsky model on anisotropic grids. Phys. Fluids, 9 , 1856–1858.

  • Shah, K. B., and J. H. Ferziger, 1995: A new non-eddy viscosity subgrid-scale model and its application to channel flow. Annual Research Briefs, Center for Turbulence Research, NASA Ames–Stanford University, 73–90.

  • Shaw, R. H., and U. Schumann, 1992: Large-eddy simulation of turbulent-flow above and within a forest. Bound.-Layer Meteor., 61 , 47–64.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91 , 99–152.

  • Speziale, C. G., 1985: Galilean invariance of subgrid-scale stress models in the large-eddy simulation of turbulence. J. Fluid Mech., 156 , 55–62.

    • Search Google Scholar
    • Export Citation
  • Stolz, S., and N. A. Adams, 1999: An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids, 11 , 1699–1701.

  • Stolz, S., N. A. Adams, and L. Kleiser, 1999: Analysis of subgrid scales and subgrid scale modeling for shock-boundary-layer interaction. Turbulence and Shear Flow I, S. Banerjee and J. K. Eaton, Eds., Begell, 881–886.

  • Stolz, S., N. A. Adams, and L. Kleiser, 2001a: An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids, 13 , 997–1015.

    • Search Google Scholar
    • Export Citation
  • Stolz, S., N. A. Adams, and L. Kleiser, 2001b: The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction. Phys. Fluids, 13 , 2985–3001.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp.

  • Sullivan, P. P., J. C. McWilliams, and C-H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71 , 247–276.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., T. W. Horst, D. H. Lenschow, C. H. Moeng, and J. C. Weil, 2003: Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J. Fluid Mech., 482 , 101–139.

    • Search Google Scholar
    • Export Citation
  • Takemi, T., and R. Rotunno, 2003: The effects of subgrid model mixing and numerical filtering in simulations of mesoscale cloud systems. Mon. Wea. Rev., 131 , 2085–2101.

    • Search Google Scholar
    • Export Citation
  • van Cittert, P., 1931: Zum Einfluß der Spaltbreite auf die Intensitätsverteilung in Spektrallinien II. Z. Phys., 69 , 298–308.

    • Search Google Scholar
    • Export Citation
  • Vreman, B., B. Geurts, and H. Kuerten, 1994: On the formulation of the dynamic mixed subgrid-scale model. Phys. Fluids, 6 , 4057–4059.

    • Search Google Scholar
    • Export Citation
  • Winckelmans, G. S., and H. Jeanmart, 2001: Assessment of some models for LES without/with explicit filtering. Direct and Large-Eddy Simulation IV, B. J. Geurts, R. Friedrich, and O. Métais, Eds., Kluwer, 55–66.

    • Search Google Scholar
    • Export Citation
  • Winckelmans, G. S., A. A. Wray, O. V. Vasilyev, and H. Jeanmart, 2001: Explicit-filtering large-eddy simulation using the tensor-diffusivity model supplemented by a dynamic Smagorinsky term. Phys. Fluids, 13 , 1385–1403.

    • Search Google Scholar
    • Export Citation
  • Wong, V. C., and D. K. Lilly, 1994: A comparison of two dynamic subgrid closure methods for turbulent thermal-convection. Phys. Fluids, 6 , 1016–1023.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., L. J. Peltier, and S. Khanna, 1998: LES in the surface layer: Surface fluxes, scaling, and SGS modeling. J. Atmos. Sci., 55 , 1733–1754.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., M. Xue, and K. K. Droegemeier, 1996: Numerical simulations of density currents in sheared environments within a vertically confined channel. J. Atmos. Sci., 53 , 770–786.

    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS): A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75 , 161–193.

    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, V. Wong, A. Shapiro, and K. Brewster, 1995: ARPS Version 4.0 User’s Guide. Center for Analysis and Prediction of Storms, University of Oklahoma, 380 pp.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS): A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76 , 143–165.

    • Search Google Scholar
    • Export Citation
  • Yeo, W. K., and K. W. Bedford, 1988: Closure-free turbulence modeling based upon a conjunctive higher order averaging procedure. Computational Methods in Flow Analysis, H. Niki and M. Kawahara, Eds., Okayama University of Science, 844–851.

  • Zang, Y., R. L. Street, and J. R. Koseff, 1993: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids, 5 , 3186–3196.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., J. G. Brasseur, and A. Juneja, 2001: A resolvable subfilter-scale model specific to large-eddy simulation of under-resolved turbulence. Phys. Fluids, 13 , 2602–2610.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2393 935 52
PDF Downloads 1250 311 25