Zonal Momentum Budget of the Madden–Julian Oscillation: The Source and Strength of Equivalent Linear Damping

Jia-Lin Lin NOAA–CIRES Climate Diagnostics Center, Boulder, Colorado

Search for other papers by Jia-Lin Lin in
Current site
Google Scholar
PubMed
Close
,
Minghua Zhang State University of New York at Stony Brook, Stony Brook, New York

Search for other papers by Minghua Zhang in
Current site
Google Scholar
PubMed
Close
, and
Brian Mapes NOAA–CIRES Climate Diagnostics Center, Boulder, Colorado

Search for other papers by Brian Mapes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Linear, dissipative models with resting base states are sometimes used in theoretical studies of the Madden–Julian oscillation (MJO). Linear mechanical damping in such models ranges from nonexistent to strong, since an observational basis for its source and strength has been lacking. This study examines the zonal momentum budget of a composite MJO over the equatorial western Pacific region, constructed using filtering and regression techniques from 15 yr (1979–93) of daily global reanalysis data. Two different reanalyses (NCEP–NCAR and ERA-15) give qualitatively similar results for all major terms, including the budget residual, whose structure is consistent with its interpretation as eddy momentum flux convergence (EMFC) in convection.

The results show that the MJO is a highly viscous oscillation, with a 3–5-day equivalent linear damping time scale, in the upper as well as lower troposphere. Upper-level damping is mainly in the form of large-scale advection terms, which are linear in MJO amplitude but involve horizontal and vertical background flow. Specifically, the leading terms are the advection of time-mean zonal shear by MJO vertical motion anomalies and advection of MJO wind anomalies by time-mean ascent. This upper-level damping in the western Pacific is mostly confined between 10°N and 10°S. In contrast, zonal wind damping in the lower troposphere involves EMFC (budget residual) and zonal mean linear meridional advection.

Stated another way, the strong upper-level damping necessitates upper-level geopotential height gradients to maintain the observed zonal wind anomalies over the time scales implied by the MJO’s low frequency. The existence of the background flow thus tends to shift MJO temperature perturbations westward so that the warm anomaly ahead (east) of the convective center is shifted back into the convection. This shifting effect is fully realized only for anomalies with a period much longer than the 3–5-day damping time.

Corresponding author address: Dr. Jia-Lin Lin, NOAA–CIRES Climate Diagnostics Center, 325 Broadway, R/CDC1, Boulder, CO 80305. Email: jialin.lin@noaa.gov

Abstract

Linear, dissipative models with resting base states are sometimes used in theoretical studies of the Madden–Julian oscillation (MJO). Linear mechanical damping in such models ranges from nonexistent to strong, since an observational basis for its source and strength has been lacking. This study examines the zonal momentum budget of a composite MJO over the equatorial western Pacific region, constructed using filtering and regression techniques from 15 yr (1979–93) of daily global reanalysis data. Two different reanalyses (NCEP–NCAR and ERA-15) give qualitatively similar results for all major terms, including the budget residual, whose structure is consistent with its interpretation as eddy momentum flux convergence (EMFC) in convection.

The results show that the MJO is a highly viscous oscillation, with a 3–5-day equivalent linear damping time scale, in the upper as well as lower troposphere. Upper-level damping is mainly in the form of large-scale advection terms, which are linear in MJO amplitude but involve horizontal and vertical background flow. Specifically, the leading terms are the advection of time-mean zonal shear by MJO vertical motion anomalies and advection of MJO wind anomalies by time-mean ascent. This upper-level damping in the western Pacific is mostly confined between 10°N and 10°S. In contrast, zonal wind damping in the lower troposphere involves EMFC (budget residual) and zonal mean linear meridional advection.

Stated another way, the strong upper-level damping necessitates upper-level geopotential height gradients to maintain the observed zonal wind anomalies over the time scales implied by the MJO’s low frequency. The existence of the background flow thus tends to shift MJO temperature perturbations westward so that the warm anomaly ahead (east) of the convective center is shifted back into the convection. This shifting effect is fully realized only for anomalies with a period much longer than the 3–5-day damping time.

Corresponding author address: Dr. Jia-Lin Lin, NOAA–CIRES Climate Diagnostics Center, 325 Broadway, R/CDC1, Boulder, CO 80305. Email: jialin.lin@noaa.gov

Save
  • Bantzer, C. H., and J. M. Wallace, 1996: Intraseasonal variability in tropical mean temperature and precipitation and their relation to the tropical 40–50-day oscillation. J. Atmos. Sci., 53 , 30323045.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., H. H. Hendon, and K. M. Weickmann, 2001: Intraseasonal air–sea interactions at the onset of El Niño. J. Climate, 14 , 17021719.

    • Search Google Scholar
    • Export Citation
  • Blade, I., and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50 , 29222939.

  • Carr, M. T., and C. S. Bretherton, 2001: Convective momentum transport over the tropical Pacific: Budget estimates. J. Atmos. Sci., 58 , 16731693.

    • Search Google Scholar
    • Export Citation
  • Chang, C. P., 1977: Viscous internal gravity waves and low-frequency oscillations in the tropics. J. Atmos. Sci., 34 , 901910.

  • Chang, C. P., and H. Lim, 1988: Kelvin wave-CISK: A possible mechanism for the 30–50 day oscillations. J. Atmos. Sci., 45 , 17091720.

    • Search Google Scholar
    • Export Citation
  • Chao, W. C., 1987: On the origin of the tropical intraseasonal oscillation. J. Atmos. Sci., 44 , 19401949.

  • Duchan, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18 , 10161022.

  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillation in the Tropics. J. Atmos. Sci., 44 , 23242340.

  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120 , 11111143.

    • Search Google Scholar
    • Export Citation
  • Esbensen, S. K., E. I. Tollerud, and J-H. Chu, 1982: Cloud-cluster-scale circulations and the vorticity budget of synoptic-scale waves over the eastern Atlantic intertropical convergence zone. Mon. Wea. Rev., 110 , 16771692.

    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., P. Kållberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA description. ECMWF Reanalysis Project Report Series 1, 86 pp.

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Goswami, P., and R. K. Rao, 1994: A dynamical mechanism for selective excitation of the Kelvin mode at timescale of 30–50 days. J. Atmos. Sci., 51 , 27692779.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., and G. N. Kiladis, 2004: Dynamics of 2-day equatorial waves. J. Atmos. Sci., 61 , 27072721.

  • Hayashi, Y., and D. G. Golder, 1986: Tropical intraseasonal oscillations appearing in a GFDL general circulation model and FGGE data. Part I: Phase propagation. J. Atmos. Sci., 43 , 30583067.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., and A. Sumi, 1986: The 30–40 day oscillation simulated in an “aqua planet” model. J. Meteor. Soc. Japan, 64 , 451466.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., and D. G. Golder, 1988: Tropical intraseasonal oscillations appearing in a GFDL general circulation model and FGGE data. Part II: Structure. J. Atmos. Sci., 45 , 30173033.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., and D. G. Golder, 1993: Tropical 40–50- and 25–30-day oscillations appearing in realistic and idealized GFDL climate models and the ECMWF dataset. J. Atmos. Sci., 50 , 464494.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., and D. G. Golder, 1997: United mechanisms for the generation of low- and high-frequency tropical waves. Part I: Control experiments with moist convective adjustment. J. Atmos. Sci., 54 , 12621276.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and B. Liebmann, 1990: A composite study of onset of the Australian summer monsoon. J. Atmos. Sci., 47 , 22272240.

  • Higgins, R. W., and K. C. Mo, 1997: Persistent North Pacific circulation anomalies and the tropical intraseasonal oscillation. J. Climate, 10 , 223244.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., J-K. E. Schemm, W. Shi, and A. Leetmaa, 2000: Extreme precipitation events in the western United Stated related to tropical forcing. J. Climate, 13 , 793820.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., S. S. Chen, D. E. Kingsmill, Y. Serra, and S. E. Yuter, 2000: Convection over the Pacific warm pool in relation to the atmospheric Kelvin–Rossby wave. J. Atmos. Sci., 57 , 30583089.

    • Search Google Scholar
    • Export Citation
  • Hsu, H-H., 1996: Global view of the intraseasonal oscillation during northern winter. J. Climate, 9 , 23862406.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kessler, W. S., M. J. McPhaden, and K. M. Weickmann, 1995: Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J. Geophys. Res., 100 , 1061310631.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1992: Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev., 120 , 19001923.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and K. M. Weickmann, 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115 , 14071436.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and P. H. Chan, 1985: Aspects of the 40–50-day oscillation during the northern winter as inferred from outgoing longwave radiation. Mon. Wea. Rev., 113 , 18891909.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., and T. J. Phillips, 1986: Coherent fluctuations of extratropical geopotential height and tropical convection in intraseasonal timescales. J. Atmos. Sci., 43 , 11641181.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. J. Atmos. Sci., 44 , 950972.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., I. M. Held, and J. D. Neelin, 1988: The Madden–Julian oscillations in an idealized general circulation model. J. Atmos. Sci., 45 , 38103831.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59 , 15931606.

    • Search Google Scholar
    • Export Citation
  • Lee, M-I., I-S. Kang, J-K. Kim, and B. E. Mapes, 2001: Influence of cloud–radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. J. Geophys. Res.106, 14 219–14 233.

  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72 , 401411.

    • Search Google Scholar
    • Export Citation
  • Lin, J. L., and B. E. Mapes, 2004: Radiation budget of the tropical intraseasonal oscillations. J. Atmos. Sci., 61 , 20502062.

  • Lin, J. L., B. E. Mapes, M. H. Zhang, and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61 , 296309.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Moskowitz, B. M., and C. S. Bretherton, 2000: An analysis of frictional feedback on a moist equatorial Kelvin mode. J. Atmos. Sci., 57 , 21882206.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1979: Large-scale aspects of deep convective activity over the GATE area. Mon. Wea. Rev., 107 , 9941013.

  • Nakazawa, T., 1986: Mean features of 30–60 day variations as inferred from 8-year OLR data. J. Meteor. Soc. Japan, 64 , 777786.

  • Neelin, J. D., and J-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: Analytical theory. J. Atmos. Sci., 51 , 18761894.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44 , 23412348.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., and J. J. Yienger, 1996: Observed long-term variability in the Hadley circulation and its connection to ENSO. J. Climate, 9 , 27512767.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58 , 28072819.

  • Reed, R. J., and R. H. Johnson, 1974: The vorticity budget of synoptic-scale wave disturbances in the tropical western Pacific. J. Atmos. Sci., 31 , 17841790.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and H. H. Hendon, 1994: Intraseasonal behavior of clouds, temperature, and motion in the Tropics. J. Atmos. Sci., 51 , 22072224.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., R. B. Garcia, and H. H. Hendon, 1994: Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51 , 23442367.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1978: The vorticity budget of a composite African tropical wave disturbance. Mon. Wea. Rev., 106 , 806817.

  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12 , 325357.

    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., 1979: Vorticity, momentum, and divergence budgets of synoptic-scale wave disturbances in the tropical eastern Atlantic. Mon. Wea. Rev., 107 , 535550.

    • Search Google Scholar
    • Export Citation
  • Sui, C-H., and M. Yanai, 1986: Cumulus ensemble effects on the large-scale vorticity and momentum fields of GATE. Part I: Observational evidence. J. Atmos. Sci., 43 , 16181642.

    • Search Google Scholar
    • Export Citation
  • Swinbank, R. T., N. Palmer, and M. K. Davey, 1988: Numerical simulations of the Madden and Julian oscillation. J. Atmos. Sci., 45 , 774788.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., T. Iguchi, M. Kachi, A. Shibata, and H. Kanzawa, 1999: Abrupt termination of the 1997–98 El Niño in response to a Madden–Julian oscillation. Nature, 402 , 279282.

    • Search Google Scholar
    • Export Citation
  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30–60-day oscillation and the Arakawa–Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66 , 883901.

    • Search Google Scholar
    • Export Citation
  • Tung, W. W., and M. Yanai, 2002a: Convective momentum transport observed during the TOGA COARE IOP. Part I: General features. J. Atmos. Sci., 59 , 18571871.

    • Search Google Scholar
    • Export Citation
  • Tung, W. W., and M. Yanai, 2002b: Convective momentum transport observed during the TOGA COARE IOP. Part II: Case studies. J. Atmos. Sci., 59 , 25352549.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1988: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45 , 20512065.

  • Wang, B., and H. Rui, 1990a: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial ß-plane. J. Atmos. Sci., 47 , 397413.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990b: Synoptic climatology of transient tropical intraseasonal convection anomalies. Meteor. Atmos. Phys., 44 , 4361.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and T. Li, 1994: Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51 , 13861400.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb streamfunction during northern winter. Mon. Wea. Rev., 113 , 941961.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., G. N. Kiladis, and P. D. Sardeshmukh, 1997: The dynamics of intraseasonal atmospheric angular momentum oscillations. J. Atmos. Sci., 54 , 14451461.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., 1994: On the preferred zonal scale of wave-CISK with conditional heating. J. Meteor. Soc. Japan, 72 , 1930.

  • Yano, J. I., and K. A. Emanuel, 1991: An improved model of the equatorial troposphere and its coupling with the stratosphere. J. Atmos. Sci., 48 , 377389.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the northern hemisphere summer monsoon. J. Meteor. Soc. Japan, 57 , 227242.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1053 775 43
PDF Downloads 242 52 6