• Asai, T., , and I. Nakasiji, 1973: On the stability of Ekman boundary layer flow with thermally unstable stratification. J. Meteor. Soc. Japan, 51 , 2943.

    • Search Google Scholar
    • Export Citation
  • Atkinson, B. W., , and J. W. Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34 , 403431.

  • Bender, C. M., , and S. Orszag, 1978: Advanced Mathematical Methods for Engineers and Scientists. McGraw-Hill, 593 pp.

  • Bister, M., , and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 52 , 233240.

  • Braun, S A., 2002: A cloud resolving simulation of Hurricane Bob (1991) Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130 , 15731592.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., , and W. K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128 , 39413961.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1970: A secondary flow model of the planetary boundary layer. J. Atmos. Sci., 27 , 742757.

  • Brown, R. A., 1972: On the inflection point instability of a stratified Ekman boundary layer. J. Atmos. Sci., 29 , 850859.

  • Brown, R. A., , and F. Lee, 1972: An application of the shooting method to the stability problem for a stratified, rotating boundary layer. J. Comput. Phys., 10 , 107122.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., , and W. T. Liu, 1982: An operational large-scale marine planetary boundary layer model. J. Appl. Meteor., 21 , 261269.

  • Businger, J. A., , J. C. Wyngaard, , J. C. Izumi, , and E. F. Bradley, 1971: Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28 , 181189.

    • Search Google Scholar
    • Export Citation
  • Businger, S., , and J. A. Businger, 2001: Viscous dissipation of turbulence kinetic energy in storms. J. Atmos. Sci., 58 , 37933796.

  • Butler, K. M., , and B. F. Farrell, 1992: Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids, 4A , 16371650.

  • Camp, J. P., , and M. Y. Montgomery, 2001: Hurricane maximum intensity: Past and present. Mon. Wea. Rev., 129 , 17041717.

  • Chandrasekhar, S., 1961: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, 654 pp.

  • Chen, Y., , and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58 , 21282145.

    • Search Google Scholar
    • Export Citation
  • Coleman, G. N., , J. H. Ferziger, , and P. R. Spalart, 1990: A numerical study of the turbulent Ekman layer. J. Fluid Mech., 213 , 313348.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., , and R. C. Foster, 2003: On the origin of near-surface streaks in the neutrally-stratified planetary boundary layer. Bound.-Layer Meteor., 108 , 247256.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., , P. Carlotti, , R. K. Newsom, , R. M. Banta, , R. C. Foster, , and J. L. Redelsperger, 2004: The structure of the near-neutral atmospheric surface layer. J. Atmos. Sci., 61 , 699714.

    • Search Google Scholar
    • Export Citation
  • Elliassen, A., 1971: On the Ekman layer in a circular vortex. J. Meteor. Soc. Japan, 49 , 784789.

  • Elliassen, A., , and M. Lystad, 1977: On the Ekman layer in a circular vortex: A numerical and theoretical study. Geophys. Norv., 31 , 116.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 1986: An air-sea interaction theory for tropical cyclone. Part I: Steady-state maintenance. J. Atmos. Sci., 43 , 585604.

  • Emanuel, K. A., 1991: The theory of hurricanes. Annu. Rev. Fluid Mech., 23 , 179196.

  • Emanuel, K., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52 , 39693976.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , and M. Bister, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65 , 233240.

  • Etling, D., 1971: The stability of an Ekman boundary flow as influenced by thermal stratification. Beitr. Phys. Atmos., 44 , 161186.

  • Etling, D., , and R. A. Brown, 1993: Roll vortices in the planetary boundary layer: A review. Bound.-Layer Meteor., 65 , 215248.

  • Faller, A. J., 1961: An experimental analogy to and proposed explanation of hurricane spiral rainbands. Preprints, Second Tech. Conf. on Hurricanes, Miami, FL, Amer. Meteor. Soc., 307–313.

  • Faller, A. J., 1965: Large eddies in the atmospheric boundary layer and their possible role in the formation of cloud rows. J. Atmos. Sci., 22 , 176184.

    • Search Google Scholar
    • Export Citation
  • Faller, A. J., 1991: Instability and transition of disturbed flow over a rotating disk. J. Fluid Mech., 230 , 245269.

  • Faller, A. J., , and R. E. Kaylor, 1966: A numerical study of the instability of the laminar Ekman boundary layer. J. Atmos. Sci., 23 , 466480.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1988: Optimal excitation of perturbations in viscous shear flow. Phys. Fluids, 31 , 20932102.

  • Foster, R. C., 1996: An analytic model for planetary boundary layer roll vortices. Ph.D. thesis, University of Washington, 196 pp.

  • Foster, R. C., 1997a: Nonlinear equilibration of Ekman layer normal modes. Preprints, 11th Conf. on Atmospheric and Ocean Fluid Dynamics, Tacoma, WA, Amer. Meteor. Soc., 244–248.

  • Foster, R. C., 1997b: Structure and energetics of optimal Ekman layer perturbations. J. Fluid Mech., 333 , 97123.

  • Foster, R. C., , and G. Levy, 1998: The contribution of organized roll vortices to the surface wind vector in baroclinic conditions. J. Atmos. Sci., 55 , 14661472.

    • Search Google Scholar
    • Export Citation
  • Frech, M., , and L. Mahrt, 1995: A two-scale mixing formulation for the atmospheric boundary layer. Bound.-Layer Meteor., 73 , 91104.

  • Fung, I., 1977: The organization of spiral rainbands in a hurricane. Ph.D. thesis, MIT, 140 pp.

  • Gall, R. G., , J. Tuttle, , and P. Hildebrand, 1998: Small-scale spiral bands observed in hurricanes Andrew, Hugo, and Erin. Mon. Wea. Rev., 126 , 17491766.

    • Search Google Scholar
    • Export Citation
  • Glendening, J. W., 1996: Lineal eddy features under strong shear conditions. J. Atmos. Sci., 53 , 34303449.

  • Greenspan, H. P., 1968: Theory of Rotating Fluids. Cambridge University Press, 327 pp.

  • Gregory, N., , J. T. Stuart, , and W. S. Walker, 1955: On the stability of three-dimensional boundary layers with application to the flow due to a rotating disc. Philos. Trans. Roy. Soc. London, 248A , 155199.

    • Search Google Scholar
    • Export Citation
  • Hall, P., 1986: An asymptotic investigation of the stationary modes of instability of the boundary layer on a rotating disc. Proc. Roy. Soc. London, 406A , 93106.

    • Search Google Scholar
    • Export Citation
  • Herbert, T., 1983: On perturbation methods in nonlinear stability theory. J. Fluid Mech., 126 , 167186.

  • Holland, G. J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108 , 12121218.

  • Katsaros, K. B., , P. W. Vachon, , W. T. Liu, , and P. G. Black, 2002: Microwave remote sensing of tropical cyclones from space. J. Oceanogr., 58 , 137151.

    • Search Google Scholar
    • Export Citation
  • Kepert, J., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part 1: Linear theory. J. Atmos. Sci., 58 , 24692484.

    • Search Google Scholar
    • Export Citation
  • Kepert, J., , and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part 2: Nonlinear enhancement. J. Atmos. Sci., 58 , 24852501.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11 , 324336.

  • Lilly, D., 1966: On the instability of Ekman boundary flow. J. Atmos. Sci., 23 , 481494.

  • Lingwood, R. J., 1995: Absolute instability of the boundary layer on a rotating disk. J. Fluid Mech., 299 , 1733.

  • Liu, W. T., , K. B. Katsaros, , and J. A. Businger, 1979: Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36 , 17221735.

    • Search Google Scholar
    • Export Citation
  • Malik, M. R., 1986: The neutral curve for stationary disturbances in rotating disc flow. J. Fluid Mech., 164 , 275287.

  • Malik, M. R., , and S. A. Orszag, 1981: Instability and transition in rotating disk flow. AIAA J., 19 , 11311138.

  • Montgomery, M. T., , H. D. Snell, , and Z. Yang, 2001: Axisymmetric spindown dynamics of hurricane-like vortices. J. Atmos. Sci., 58 , 421435.

    • Search Google Scholar
    • Export Citation
  • Morrison, I., , S. Businger, , F. Marks, , P. Dodge, , and J A. Businger, 2005: An observational case for the prevalence of roll vortices in the hurricane boundary layer. J. Atmos. Sci., 62 , 26622673.

    • Search Google Scholar
    • Export Citation
  • Persing, J., , and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60 , 23492371.

  • Powell, P., , J. Vickery, , and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclone. Nature, 422 , 279283.

    • Search Google Scholar
    • Export Citation
  • Reddy, S. C., , P. J. Schmid, , and D. S. Henningson, 1993: Pseudospectra of the Orr-Sommerfeld operator. SIAM J. Appl. Math., 53 , 1547.

  • Sen, P. K., , and D. Venkateswarlu, 1983: On the stability of plane Poiseuille flow to finite-amplitude disturbances, considering the higher-order Landau coefficients. J. Fluid Mech., 133 , 179206.

    • Search Google Scholar
    • Export Citation
  • Spalart, P. R., , R. D. Moser, , and M. M. Rogers, 1991: Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions. J. Comput. Phys., 96 , 297324.

    • Search Google Scholar
    • Export Citation
  • Stuart, J. T., 1958: On the nonlinear mechanics of hydrodynamic stability. J. Fluid Mech., 4 , 121.

  • Trefethen, L. N., , A. E. Trefethen, , S. C. Reddy, , and T. A. Driscoll, 1993: Hydrodynamic stability without eigenvalues. Science, 261 , 578584.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2002: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59 , 12391262.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., , and J. Winslow, 1998: Intense sub-kilometer boundary layer rolls in Hurricane Fran. Science, 280 , 555557.

  • Young, G., , D. Kristovich, , M. Hjelmfelt, , and R. C. Foster, 2002: Supplement to “Rolls, streets, waves, and more: A review of quasi-two-dimensional structures in the atmospheric boundary layer.”. Bull. Amer. Meteor. Soc., 83 , 1001. [Available online at http://ams.allenpress.com/pdfserv/10.1175%2FBAMS-83-7-Young.].

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., , V. M. Gryanik, , V. N. Lykossov, , and D. V. Mironov, 1999: Third-order transport and nonlocal turbulence closures for convective boundary layers. J. Atmos. Sci., 56 , 34633477.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 255 255 41
PDF Downloads 212 212 27

Why Rolls are Prevalent in the Hurricane Boundary Layer

View More View Less
  • 1 Applied Physics Laboratory, University of Washington, Seattle, Washington
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Recent remote sensing observations show that the hurricane boundary layer flow, although energetic, is not a region of homogeneous turbulence. In fact, the observations convincingly demonstrate that a large fraction of the turbulent flow in the regions away from the deep convective rainbands is highly organized into intense horizontal roll vortices that are approximately aligned with the mean wind and span the depth of the boundary layer. These observations show that rolls strongly increase the flux of momentum between the underlying surface and the main body of the storm compared to an equivalent hurricane boundary layer flow without rolls. The linear and nonlinear dynamics of hurricane boundary layer roll formation are outlined and it is shown why rolls are, in fact, the expected basic hurricane boundary layer state. The model presented here explains the hurricane roll features currently documented in field programs and makes predictions that can be tested in future experiments. The primary effects of rolls on the boundary layer fluxes are inherently nonlocal and nongradient and hence cannot be captured by standard downgradient turbulence parameterizations used in hurricane simulations. However, the nonlinear theory is the proper starting point for developing boundary layer parameterizations that include roll modification of the turbulent fluxes.

Corresponding author address: Ralph C. Foster, 1013 NE 40th St., Seattle, WA 98105-6698. Email: ralph@apl.washington.edu

Abstract

Recent remote sensing observations show that the hurricane boundary layer flow, although energetic, is not a region of homogeneous turbulence. In fact, the observations convincingly demonstrate that a large fraction of the turbulent flow in the regions away from the deep convective rainbands is highly organized into intense horizontal roll vortices that are approximately aligned with the mean wind and span the depth of the boundary layer. These observations show that rolls strongly increase the flux of momentum between the underlying surface and the main body of the storm compared to an equivalent hurricane boundary layer flow without rolls. The linear and nonlinear dynamics of hurricane boundary layer roll formation are outlined and it is shown why rolls are, in fact, the expected basic hurricane boundary layer state. The model presented here explains the hurricane roll features currently documented in field programs and makes predictions that can be tested in future experiments. The primary effects of rolls on the boundary layer fluxes are inherently nonlocal and nongradient and hence cannot be captured by standard downgradient turbulence parameterizations used in hurricane simulations. However, the nonlinear theory is the proper starting point for developing boundary layer parameterizations that include roll modification of the turbulent fluxes.

Corresponding author address: Ralph C. Foster, 1013 NE 40th St., Seattle, WA 98105-6698. Email: ralph@apl.washington.edu

Save