• Allen, D J., , R B. Rood, , A M. Thompson, , and R D. Hudson, 1996: Three-dimensional radon 222 calculations using assimilated meteorological data and a convective mixing algorithm. J. Geophys. Res., 101 , 68716881.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and W H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31 , 674701.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., and Coauthors, 2000: A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE. II: Intercomparison of single-column models and a cloud-resolving model. Quart. J. Roy. Meteor. Soc., 126 , 823863.

    • Search Google Scholar
    • Export Citation
  • Bell, N., and Coauthors, 2002: Methyl iodide: Atmospheric budget and use as a tracer of marine convection in global models. J. Geophys. Res., 107 .4340, doi:10.1029/2001JD001151.

    • Search Google Scholar
    • Export Citation
  • Bey, I., and Coauthors, 2001: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res., 106 , 2307323095.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., 1985: A simple parameterization of the large-scale effects of cumulus convection. Mon. Wea. Rev., 113 , 21082121.

  • Brinkop, S., , and R. Sausen, 1997: A finite difference approximation for convective transports which maintains positive tracer concentrations. Beitr. Phys. Atmos., 70 , 245248.

    • Search Google Scholar
    • Export Citation
  • Chatfield, R B., , and P J. Crutzen, 1984: Sulfur dioxide in remote oceanic air: Cloud transport of reactive precursors. J. Geophys. Res., 89 , 71117132.

    • Search Google Scholar
    • Export Citation
  • Collins, W J., , D S. Stevenson, , C E. Johnson, , and R G. Derwent, 1999: Role of convection in determining the budget of odd hydrogen in the upper troposphere. J. Geophys. Res., 104 , 2692726941.

    • Search Google Scholar
    • Export Citation
  • Collins, W J., , R. G. Derwent, , C E. Johnson, , and D S. Stevenson, 2002: A comparison of two schemes for the convective transport of chemical species in a Lagrangian global chemistry model. Quart. J. Roy. Meteor. Soc., 128 , 9911009.

    • Search Google Scholar
    • Export Citation
  • Crutzen, P J., , and M G. Lawrence, 2000: The impact of precipitation scavenging on the transport of trace gases: A 3-dimensional model sensitivity study. J. Atmos. Chem., 37 , 81112.

    • Search Google Scholar
    • Export Citation
  • Dickerson, R R., and Coauthors, 1987: Thunderstorms: An important mechanism in the transport of air pollutants. Science, 235 , 460465.

    • Search Google Scholar
    • Export Citation
  • Donner, L J., , and V T. Phillips, 2003: Boundary layer control on convective available potential energy: Implications for cumulus parameterization. J. Geophys. Res., 108 .4701, doi:10.1029/2003JD003773.

    • Search Google Scholar
    • Export Citation
  • Donner, L J., , C J. Seman, , and R S. Hemler, 2001: A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: Thermodynamic and hydrological aspects in a general circulation model. J. Climate, 14 , 34443463.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K A., , and M. Zivkovic-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56 , 17661782.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , and P R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118 , 14831506.

    • Search Google Scholar
    • Export Citation
  • Grell, G A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121 , 764787.

  • Hack, J J., 1994: Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2). J. Geophys. Res., 99 , 55515568.

    • Search Google Scholar
    • Export Citation
  • Hack, J J., , W H. Schubert, , and P. L. S. Dias, 1984: A spectral cumulus parameterization for use in numerical models of the tropical atmosphere. Mon. Wea. Rev., 112 , 704716.

    • Search Google Scholar
    • Export Citation
  • Hauglustaine, D A., , G P. Brasseur, , S. Walters, , P J. Rasch, , J-F. Mueller, , L K. Emmons, , and M A. Carroll, 1998: MOZART, a global chemical transport model for ozone and related chemical tracers, 2: Model results and evaluation. J. Geophys. Res., 103 , 2829128335.

    • Search Google Scholar
    • Export Citation
  • Heimann, M., 1995: The global atmospheric tracer model TM2. Tech. Rep. 10, Deutsches Klimarechenzentrum, Hamburg, Germany, 53 pp.

  • Horowitz, L W., and Coauthors, 2003: A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. J. Geophys. Res., 108 .4784, doi:10.1029/2002JD002853.

    • Search Google Scholar
    • Export Citation
  • Jaeglé, L., , D J. Jacob, , W H. Brune, , and P O. Wennberg, 2001: Chemistry of HOx radicals in the upper troposphere. Atmos. Environ., 35 , 469489.

    • Search Google Scholar
    • Export Citation
  • Kain, J S., , and J M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 27842802.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kiehl, J T., , G B. Bonan, , B A. Boville, , B P. Briegleb, , D L. Williamson, , and P J. Rasch, 1996: Description of the NCAR community climate model (CCM3). NCAR Tech. Note NCAR/TN-420+STR, National Center for Atmospheric Research, Boulder, CO, 152 pp.

  • Kuo, H L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22 , 4063.

    • Search Google Scholar
    • Export Citation
  • Lawrence, M G., 2001: Evaluating trace gas sampling strategies with assistance from a global 3D photochemical model: Case studies for CEPEX and NARE O3 profiles. Tellus, 53B , 2239.

    • Search Google Scholar
    • Export Citation
  • Lawrence, M G., , P J. Crutzen, , and P J. Rasch, 1999a: Analysis of the CEPEX ozone data using a 3D chemistry–meteorology model. Quart. J. Roy. Meteor. Soc., 125 , 29873009.

    • Search Google Scholar
    • Export Citation
  • Lawrence, M G., , P J. Crutzen, , P J. Rasch, , B E. Eaton, , and N M. Mahowald, 1999b: A model for studies of tropospheric photochemistry: Description, global distributions, and evaluation. J. Geophys. Res., 104 , 2624526277.

    • Search Google Scholar
    • Export Citation
  • Lawrence, M G., , R. von Kuhlmann, , M. Salzmann, , and P J. Rasch, 2003a: The balance of effects of deep convective mixing on tropospheric ozone. Geophys. Res. Lett., 30 .1940, doi:10.1029/2003GL017644.

    • Search Google Scholar
    • Export Citation
  • Lawrence, M G., and Coauthors, 2003b: Global chemical weather forecasts for field campaign planning: Predictions and observations of large-scale features during MINOS, CONTRACE, and INDOEX. Atmos. Chem. Phys., 3 , 267289.

    • Search Google Scholar
    • Export Citation
  • Lelieveld, J., , and P J. Crutzen, 1994: Role of deep cloud convection in the ozone budget of the troposphere. Science, 264 , 17591761.

    • Search Google Scholar
    • Export Citation
  • Liao, H., , P J. Adams, , S H. Chung, , J H. Seinfield, , L J. Mickley, , and D J. Jacob, 2003: Interactions between tropospheric chemistry and aerosols in a unified general circulation model. J. Geophys. Res., 108 .4001, doi:10.1029/2001JD001260.

    • Search Google Scholar
    • Export Citation
  • Lord, S J., , W C. Chao, , and A. Arakawa, 1982: Interaction of a cumulus cloud ensemble with the large-scale environment. Part IV: The discrete model. J. Atmos. Sci., 39 , 104112.

    • Search Google Scholar
    • Export Citation
  • Mahowald, N M., , P J. Rasch, , and R G. Prinn, 1995: Cumulus parameterizations in chemical transport models. J. Geophys. Res., 100 , 2617326189.

    • Search Google Scholar
    • Export Citation
  • Mahowald, N M., , P J. Rasch, , B E. Eaton, , S. Whittlestone, , and R G. Prinn, 1997a: Transport of 222radon to the remote troposphere using the model of atmospheric transport and chemistry and assimilated winds from ECMWF and the National Centers for Environmental Prediction/NCAR. J. Geophys. Res., 102 , 2813928152.

    • Search Google Scholar
    • Export Citation
  • Mahowald, N M., , P J. Rasch, , and R G. Prinn, 1997b: Deducing CCl3F emissions using an inverse method and chemical transport models with assimilated winds. J. Geophys. Res., 102 , 2815328168.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., , J. Smagorinsky, , and R F. Strickler, 1965: Simulated climatology of a general circulation model with a hydrological cycle. Mon. Wea. Rev., 93 , 769798.

    • Search Google Scholar
    • Export Citation
  • Mari, C., , D J. Jacob, , and P. Bechtold, 2000: Transport and scavenging of soluble gases in a deep convective cloud. J. Geophys. Res., 105 , 2225522267.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., , and M J. Suarez, 1992: Relaxed Arakawa–Schubert—A parameterization of moist convection for general-circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Nober, F J., , and H F. Graf, 2004: A new convective cloud field model based on principles of self-organisation. Atmos. Chem. Phys. Discuss., 4 , 36693698.

    • Search Google Scholar
    • Export Citation
  • Pan, H., , and W. Wu, 1995: Implementing a mass flux convection parameterization package for the NMC medium-range forecast model. Tech. Rep. 409, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Meteorological Center, 41 pp.

  • Pickering, K E., , A M. Thompson, , R R. Dickerson, , W T. Luke, , D P. McNamara, , J P. Greenberg, , and P R. Zimmerman, 1990: Model calculations of tropospheric ozone production potential following observed convective events. J. Geophys. Res., 95 , 1404914062.

    • Search Google Scholar
    • Export Citation
  • Pickering, K E., , J R. Scala, , A M. Thompson, , W. Tao, , and J. Simpson, 1992: A regional estimate of convective transport of CO from biomass burning. Geophys. Res. Lett., 19 , 289292.

    • Search Google Scholar
    • Export Citation
  • Prather, M J., , and D J. Jacob, 1997: A persistent imbalance in HOx and NOx photochemistry of the upper troposphere driven by deep tropical convection. Geophys. Res. Lett., 24 , 31893192.

    • Search Google Scholar
    • Export Citation
  • Rasch, P., , N M. Mahowald, , and B E. Eaton, 1997: Representations of transport, convection and the hydrologic cycle in chemical transport models: Implications for the modeling of short lived and soluble species. J. Geophys. Res., 102 , 2812728138.

    • Search Google Scholar
    • Export Citation
  • Rasch, P., , D. Zurovac-Jevtic, , K. Emanuel, , and M. Lawrence, 2003: Consistent representation of convective processes for chemistry and climate models. Geophys. Res. Abstr., 5 , 12440.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., , L. Bengtsson, , J. Feichter, , J. Lelieveld, , and H. Rodhe, 1999: Transient climate change simulations with a coupled atmosphere–ocean GCM including the tropospheric sulfur cycle. J. Climate, 12 , 30043032.

    • Search Google Scholar
    • Export Citation
  • Roelofs, G., , and J. Lelieveld, 1995: Distribution and budget of O3 in the troposphere calculated with a chemistry general circulation model. J. Geophys. Res., 100 , 2098320998.

    • Search Google Scholar
    • Export Citation
  • Rood, R B., 1987: Numerical advection algorithms and their role in atmospheric transport and chemistry models. Rev. Geophys., 25 , 71100.

    • Search Google Scholar
    • Export Citation
  • Stockwell, D Z., , and M P. Chipperfield, 1999: A tropospheric chemical-transport model: Development and validation of the model transport schemes. Quart. J. Roy. Meteor. Soc., 125 , 17471783.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Search Google Scholar
    • Export Citation
  • von Kuhlmann, R., , M G. Lawrence, , P J. Crutzen, , and P J. Rasch, 2003a: A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model description and ozone results. J. Geophys. Res., 108 .4294, doi:10.1029/2002JD002893.

    • Search Google Scholar
    • Export Citation
  • von Kuhlmann, R., , M G. Lawrence, , P J. Crutzen, , and P J. Rasch, 2003b: A model for studies of tropospheric ozone and non-methane hydrocarbons: Model evaluation of ozone related species. J. Geophys. Res., 108 .4729, doi:10.1029/2002JD003348.

    • Search Google Scholar
    • Export Citation
  • Xie, S., and Coauthors, 2002: Intercomparison and evaluation of cumulus parameterizations under summertime midlatitude continental conditions. Quart. J. Roy. Meteor. Soc., 128 , 10951135.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , S. Esbensen, , and J. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
  • Yano, J-I., , F. Guichard, , J-P. Lafore, , J-L. Redelsperger, , and P. Bechtold, 2004: Estimations of mass fluxes for cumulus parameterizations from high-resolution spatial data. J. Atmos. Sci., 61 , 829842.

    • Search Google Scholar
    • Export Citation
  • Zhang, G J., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107 .4220, doi:10.1029/2001JD001005.

    • Search Google Scholar
    • Export Citation
  • Zhang, G J., 2003: Convective quasi-equilibrium in the tropical western Pacific: Comparison with midlatitude continental environment. J. Geophys. Res., 108 .4592, doi:10.1029/2003JD003520.

    • Search Google Scholar
    • Export Citation
  • Zhang, G J., , and N A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33 , 407446.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 56 6
PDF Downloads 24 24 0

Tracer Transport in Deep Convective Updrafts: Plume Ensemble versus Bulk Formulations

View More View Less
  • 1 Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany
  • | 2 Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Two widely used approaches for parameterizing tracer transport based on convective mass fluxes are the plume ensemble formulation (PEF) and the bulk formulation (BF). Here the behavior of these two is contrasted for the specific case in which the BF airmass fluxes are derived as a direct simplification of an explicit PEF. Relative to the PEF, the BF has a greater rate of entrainment of midtropospheric air into the parcels that reach the highest altitudes, and thus is expected to compute less efficient transport of surface-layer tracers to the upper troposphere. In this study, this difference is quantified using a new algorithm for computing mass conserving, monotonic tracer transport for both the BF and PEF, along with a technique for decomposing a bulk mass flux profile into a set of consistent, discrete plumes for use in the PEF. Runs with a 3D global chemistry transport model (MATCH) show that the BF is likely to be an adequate approximation for most tracers with lifetimes of a week or longer. However, for short-lived tracers (lifetimes of a couple days or less) the BF results in significantly less efficient transport to the upper troposphere than the PEF, with differences exceeding 30% on a monthly zonal mean basis. Implications of these results for tropospheric chemistry are discussed.

Corresponding author address: Dr. Mark Lawrence, Dept. of Atmospheric Chemistry, Max Planck Institute for Chemistry, Posfach 3060, D-55020, Mainz, Germany. Email: lawrence@mpch-mainz.mpg.de

Abstract

Two widely used approaches for parameterizing tracer transport based on convective mass fluxes are the plume ensemble formulation (PEF) and the bulk formulation (BF). Here the behavior of these two is contrasted for the specific case in which the BF airmass fluxes are derived as a direct simplification of an explicit PEF. Relative to the PEF, the BF has a greater rate of entrainment of midtropospheric air into the parcels that reach the highest altitudes, and thus is expected to compute less efficient transport of surface-layer tracers to the upper troposphere. In this study, this difference is quantified using a new algorithm for computing mass conserving, monotonic tracer transport for both the BF and PEF, along with a technique for decomposing a bulk mass flux profile into a set of consistent, discrete plumes for use in the PEF. Runs with a 3D global chemistry transport model (MATCH) show that the BF is likely to be an adequate approximation for most tracers with lifetimes of a week or longer. However, for short-lived tracers (lifetimes of a couple days or less) the BF results in significantly less efficient transport to the upper troposphere than the PEF, with differences exceeding 30% on a monthly zonal mean basis. Implications of these results for tropospheric chemistry are discussed.

Corresponding author address: Dr. Mark Lawrence, Dept. of Atmospheric Chemistry, Max Planck Institute for Chemistry, Posfach 3060, D-55020, Mainz, Germany. Email: lawrence@mpch-mainz.mpg.de

Save