• Bantzer, C H., , and J M. Wallace, 1996: Intraseasonal variability in tropical mean temperature and precipitation and their relation to the tropical 40–50 day oscillation. J. Atmos. Sci., 53 , 30323045.

    • Search Google Scholar
    • Export Citation
  • Biello, J A., , and A J. Majda, 2005: A new multiscale model for the Madden–Julian oscillation. J. Atmos. Sci., 62 , 16941721.

  • Bladé, I., , and D L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50 , 29222939.

    • Search Google Scholar
    • Export Citation
  • Boyd, J P., 1978: The effects of latitudinal shear on equatorial waves. Part I: Theory and methods. J. Atmos. Sci., 35 , 22362258.

  • Chang, C-P., 1977: Viscous internal gravity waves and low-frequency oscillations in the Tropics. J. Atmos. Sci., 34 , 901910.

  • Chang, C-P., , and H. Lim, 1988: Kelvin wave-CISK: A possible mechanism for the 30–50-day oscillation. J. Atmos. Sci., 45 , 17091720.

  • Chao, W C., 1987: On the origin of the tropical intraseasonal oscillation. J. Atmos. Sci., 44 , 19401949.

  • Chen, S S., , R A. Houze, , and B E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53 , 13801409.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P E., , R H. Johnson, , P T. Haertel, , and J. Wang, 2003: Corrected TOGA COARE sounding humidity data: Impact on diagnosed properties of convection and climate over the warm pool. J. Climate, 16 , 23702384.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T J., , and F X. Crum, 1995: Eastward propagating ∼2- to 15-day equatorial convection and its relation to the tropical intraseasonal oscillation. J. Geophys. Res., 100 , 2578125790.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K A., 1987: An air–sea interaction model of intraseasonal oscillations in the Tropics. J. Atmos. Sci., 44 , 23242340.

  • Emanuel, K A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K A., , J D. Neelin, , and C S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120 , 11111143.

    • Search Google Scholar
    • Export Citation
  • Flatau, M., , P J. Flatau, , P. Phoebus, , and P P. Niiler, 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. J. Atmos. Sci., 54 , 23732386.

    • Search Google Scholar
    • Export Citation
  • Flatau, M K., , P J. Flatau, , J. Schmidt, , and G N. Kiladis, 2003: Delayed onset of the 2002 Indian monsoon. Geophys. Res. Lett., 30 .1768, doi:10.1029/2003GL017434.

    • Search Google Scholar
    • Export Citation
  • Fulton, S R., , and W H. Schubert, 1985: Vertical normal mode transforms: Theory and application. Mon. Wea. Rev., 113 , 647658.

  • Gamache, J F., , and R A. Houze, 1985: Further analysis of the composite wind and thermodynamic structure of the 12 September GATE squall line. Mon. Wea. Rev., 113 , 12411259.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W W., 2003: MJO-like coherent structures: Sensitivity simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 60 , 847864.

    • Search Google Scholar
    • Export Citation
  • Gustafson, W I., , and B C. Weare, 2004: MM5 modeling of the Madden–Julian oscillation in the Indian and west Pacific Oceans: Model description and control run results. J. Climate, 17 , 13201337.

    • Search Google Scholar
    • Export Citation
  • Gutzler, D S., , G N. Kiladis, , G A. Meehl, , K M. Weickmann, , and M. Wheeler, 1994: The global climate of December 1992–February 1993. Part II: Large-scale variability across the tropical western Pacific during TOGA COARE. J. Climate, 7 , 16061622.

    • Search Google Scholar
    • Export Citation
  • Haertel, P T., , and R H. Johnson, 1998: Two-day disturbances in the equatorial western Pacific. Quart. J. Roy. Meteor. Soc., 124 , 615636.

    • Search Google Scholar
    • Export Citation
  • Haertel, P T., , and G N. Kiladis, 2004: On the dynamics of two-day equatorial disturbances. J. Atmos. Sci., 61 , 27072721.

  • Hayashi, Y., , and D G. Golder, 1993: Tropical 40–50- and 25–30-day oscillations appearing in realistic and idealized GFDL climate models and the ECMWF dataset. J. Atmos. Sci., 50 , 464494.

    • Search Google Scholar
    • Export Citation
  • Hendon, H H., 1988: A simple model of the 40–50 day oscillation. J. Atmos. Sci., 45 , 569584.

  • Hendon, H H., , and B. Liebmann, 1994: Organization of convection within the Madden–Julian oscillation. J. Geophys. Res., 99 , 80738083.

    • Search Google Scholar
    • Export Citation
  • Hendon, H H., , and M L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51 , 22252237.

  • Hendon, H H., , and M L. Salby, 1996: Planetary-scale circulations forced by intraseasonal variations of observed convection. J. Atmos. Sci., 53 , 17511758.

    • Search Google Scholar
    • Export Citation
  • Hendon, H H., , C. Zhang, , and J D. Glick, 1999: Interannual variation of the Madden–Julian oscillation during austral summer. J. Climate, 12 , 25382550.

    • Search Google Scholar
    • Export Citation
  • Holton, J R., 1970: The influence of mean wind shear on the propagation of Kelvin waves. Tellus, 22 , 186193.

  • Holton, J R., 1971: A diagnostic model for equatorial wave disturbances: The role of vertical shear of the mean zonal wind. J. Atmos. Sci., 28 , 5564.

    • Search Google Scholar
    • Export Citation
  • Houze, R A., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115 , 425461.

    • Search Google Scholar
    • Export Citation
  • Houze, R A., , S S. Chen, , and D E. Kingsmill, 2000: Convection over the Pacific warm pool in relation to the atmospheric Kelvin–Rossby wave. J. Atmos. Sci., 57 , 30583089.

    • Search Google Scholar
    • Export Citation
  • Hsu, H-H., , C-H. Weng, , and C-H. Wu, 2004: Contrasting characteristics between the northward and eastward propagation of the intraseasonal oscillation during the boreal summer. J. Climate, 17 , 727743.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., , and D A. Randall, 1994: Low-frequency oscillations in radiative–convective systems. J. Atmos. Sci., 51 , 10891099.

  • Inness, P M., , and J M. Slingo, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part I: Comparison with observations and an atmosphere-only GCM. J. Climate, 16 , 345364.

    • Search Google Scholar
    • Export Citation
  • Johnson, R H., , T M. Rickenbach, , S A. Rutledge, , P E. Ciesielski, , and W H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12 , 23972418.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , and B C. Weare, 1996: The role of low-level moisture convergence and ocean latent heat fluxes in the Madden–Julian oscillation: An observational analysis using ISCCP data and ECMWF analyses. J. Climate, 9 , 30863140.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S R., , and B. Wang, 2001: Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14 , 29232942.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S R., , and B C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14 , 780793.

  • Kessler, W S., 2001: EOF representations of the Madden–Julian Oscillation and its connection with ENSO. J. Climate, 14 , 30553061.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , and Y N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31 .L10101, doi:10.1029/2004GL019601.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G N., , and K M. Weickmann, 1992: Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev., 120 , 19001923.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G N., , G A. Meehl, , and K M. Weickmann, 1994: Large-scale circulation associated with westerly wind bursts and deep convection over the western equatorial Pacific. J. Geophys. Res., 99 , 1852718544.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G N., , K H. Straub, , G C. Reid, , and K S. Gage, 2001: Aspects of interannual and intraseasonal variability of the tropopause and lower stratosphere. Quart. J. Roy. Meteor. Soc., 127 , 19611984.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T N., , D R. Chakraborty, , N. Cubukcu, , S. Stefanova, , and T. S. V. Vijaya Kumar, 2003: A mechanism of the Madden–Julian oscillation based on interactions in the frequency domain. Quart. J. Roy. Meteor. Soc., 129 , 25592590.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., , and L. Peng, 1987: Origin of low frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: The basic theory. J. Atmos. Sci., 44 , 950972.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , and C A. Smith, 1996: Description of a complete (interpolated) OLR dataset. Bull. Amer. Meteor. Soc., 77 , 12751277.

  • Lin, J., , B E. Mapes, , M. Zhang, , and M. Newman, 2004: Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. J. Atmos. Sci., 61 , 296309.

    • Search Google Scholar
    • Export Citation
  • Lin, J., , M. Zhang, , and B E. Mapes, 2005: Zonal momentum budget of the Madden–Julian oscillation: The source and strength of equivalent linear damping. J. Atmos. Sci., 62 , 21722188.

    • Search Google Scholar
    • Export Citation
  • Lin, J. W-B., , J D. Neelin, , and N. Zeng, 2000: Maintenance of tropical intraseasonal variability: Impact of evaporation–wind feedback and midlatitude storms. J. Atmos. Sci., 57 , 27932823.

    • Search Google Scholar
    • Export Citation
  • Lin, X., , and R H. Johnson, 1996: Heating, moistening, and rainfall over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53 , 33673383.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R S., 1971: Equatorial planetary-scale waves in shear: Part I. J. Atmos. Sci., 28 , 609622.

  • Lindzen, R S., 2003: The interaction of waves and convection in the Tropics. J. Atmos. Sci., 60 , 30093020.

  • Livezey, R E., , and W Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111 , 4659.

    • Search Google Scholar
    • Export Citation
  • Madden, R., , and P. Julian, 1972: Description of global scale circulation cells in the Tropics with a 40–50 day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R., , and P. Julian, 2005: Historical perspective. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. K.-M. Lau and D. Waliser, Eds., Springer-Praxis, 1–16.

    • Search Google Scholar
    • Export Citation
  • Majda, A J., , and M G. Shefter, 2001: Models for stratiform instability and convectively coupled waves. J. Atmos. Sci., 58 , 15671584.

    • Search Google Scholar
    • Export Citation
  • Majda, A J., , and J A. Biello, 2004: A multiscale model for tropical intraseasonal oscillations. Proc. Natl. Acad. Sci., 101 , 47364741.

    • Search Google Scholar
    • Export Citation
  • Majda, A J., , B. Khouider, , G N. Kiladis, , K H. Straub, , and M G. Shefter, 2004: A model for convectively coupled tropical waves: Nonlinearity, rotation, and comparison with observations. J. Atmos. Sci., 61 , 21882205.

    • Search Google Scholar
    • Export Citation
  • Maloney, E D., , and D L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11 , 23872403.

    • Search Google Scholar
    • Export Citation
  • Maloney, E D., , and A H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17 , 43684386.

    • Search Google Scholar
    • Export Citation
  • Mapes, B E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57 , 15151535.

    • Search Google Scholar
    • Export Citation
  • Mapes, B E., , and R A. Houze, 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121 , 13981415.

  • Mapes, B E., , and R A. Houze, 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52 , 18071828.

    • Search Google Scholar
    • Export Citation
  • Mapes, B E., , and J. Lin, 2005: Doppler radar observations of mesoscale wind divergences in regions of tropical convection. Mon. Wea. Rev., 133 , 18081824.

    • Search Google Scholar
    • Export Citation
  • Matthews, A J., 2000: Propagation mechanisms for the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 126 , 26372651.

  • Matthews, A J., , B J. Hoskins, , and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during northern winter. Quart. J. Roy. Meteor. Soc., 130 , 19912012.

    • Search Google Scholar
    • Export Citation
  • Meehl, G A., , R. Lukas, , G N. Kiladis, , K M. Weickmann, , A J. Matthews, , and M. Wheeler, 2001: A conceptual framework for time and space scale interactions in the climate system. Climate Dyn., 17 , 753775.

    • Search Google Scholar
    • Export Citation
  • Milliff, R F., , and R A. Madden, 1996: The existence and vertical structure of fast, eastward-moving disturbances in the equatorial troposphere. J. Atmos. Sci., 53 , 586597.

    • Search Google Scholar
    • Export Citation
  • Milliff, R F., , T J. Hoar, , and R A. Madden, 1998: Fast, eastward-moving disturbances in the surface winds of the equatorial Pacific. Tellus, 50A , 2641.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61 , 15211538.

    • Search Google Scholar
    • Export Citation
  • Moskowitz, B M., , and C S. Bretherton, 2000: An analysis of frictional feedback on a moist equatorial Kelvin mode. J. Atmos. Sci., 57 , 21882206.

    • Search Google Scholar
    • Export Citation
  • Mote, P W., , H L. Clark, , T J. Dunkerton, , R S. Harwood, , and H C. Pumphrey, 2000: Intraseasonal variations of water vapor in the tropical upper troposphere and tropopause region. J. Geophys. Res., 105 , 1745717470.

    • Search Google Scholar
    • Export Citation
  • Myers, D S., , and D E. Waliser, 2003: Three-dimensional water vapor and cloud variations associated with the Madden–Julian oscillation during Northern Hemisphere winter. J. Climate, 16 , 929950.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66 , 823839.

    • Search Google Scholar
    • Export Citation
  • Neelin, J D., , and J-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: Analytical theory. J. Atmos. Sci., 51 , 18761894.

    • Search Google Scholar
    • Export Citation
  • Neelin, J D., , I M. Held, , and K H. Cook, 1987: Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44 , 23412348.

    • Search Google Scholar
    • Export Citation
  • Olson, W S., , Y. Hong, , C D. Kummerow, , and J. Turk, 2001: A texture-polarization method for estimating convective–stratiform precipitation are a coverage from passive microwave radiometer data. J. Appl. Meteor., 40 , 15771591.

    • Search Google Scholar
    • Export Citation
  • Randall, D., , M. Khairoutdinov, , A. Arakawa, , and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84 , 15471564.

    • Search Google Scholar
    • Export Citation
  • Raymond, D J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58 , 28072819.

  • Reed, R J., , D C. Norquist, , and E E. Recker, 1977: The structure and properties of African wave disturbances as observed during Phase III of GATE. Mon. Wea. Rev., 105 , 317333.

    • Search Google Scholar
    • Export Citation
  • Roundy, P E., , and W M. Frank, 2004a: Effects of low-frequency wave interactions on intraseasonal oscillations. J. Atmos. Sci., 61 , 30253040.

    • Search Google Scholar
    • Export Citation
  • Roundy, P E., , and W M. Frank, 2004b: Applications of a multiple linear regression model to the analysis of relationships between eastward- and westward-moving intraseasonal modes. J. Atmos. Sci., 61 , 30413048.

    • Search Google Scholar
    • Export Citation
  • Rui, H., , and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47 , 357379.

    • Search Google Scholar
    • Export Citation
  • Salby, M L., , and H H. Hendon, 1994: Intraseasonal behavior of clouds, winds, and temperature in the Tropics. J. Atmos. Sci., 51 , 22072224.

    • Search Google Scholar
    • Export Citation
  • Salby, M L., , R. Garcia, , and H H. Hendon, 1994: Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51 , 23442367.

    • Search Google Scholar
    • Export Citation
  • Sassi, F., , M. Salby, , H C. Pumphrey, , and W G. Read, 2002: Influence of the Madden–Julian oscillation on upper tropospheric humidity. J. Geophys. Res., 107 .4681, doi:10.1029/2001JD001331.

    • Search Google Scholar
    • Export Citation
  • Seo, K-H., , and K-Y. Kim, 2003: Propagation and initiation mechanisms of the Madden–Julian oscillation. J. Geophys. Res., 108 .4384, doi:10.1029/2002JD002876.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S C., , and R. Wahrlich, 1999: Observed evolution of tropical deep convective events and their environment. Mon. Wea. Rev., 127 , 17771795.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S C., , T. Horinouchi, , and H A. Zeleznik, 2003: Convective impact on temperatures observed near the tropical tropopause. J. Atmos. Sci., 60 , 18471856.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., , H H. Hendon, , and J. Glick, 1998: Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans. J. Climate, 11 , 16851702.

    • Search Google Scholar
    • Export Citation
  • Sperber, K R., 2003: Propagation and the vertical structure of the Madden–Julian oscillation. Mon. Wea. Rev., 131 , 30183037.

  • Sperber, K R., , J M. Slingo, , P M. Inness, , and W. K-M. Lau, 1997: On the maintenance and initiation of the intraseasonal oscillation in the NCEP/NCAR reanalysis and in the GLA and UKMO AMIP simulations. Climate Dyn., 13 , 769795.

    • Search Google Scholar
    • Export Citation
  • Straub, K H., , and G N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59 , 3053.

    • Search Google Scholar
    • Export Citation
  • Straub, K H., , and G N. Kiladis, 2003a: Interactions between the boreal summer intraseasonal oscillation and higher frequency tropical wave activity. Mon. Wea. Rev., 131 , 945960.

    • Search Google Scholar
    • Export Citation
  • Straub, K H., , and G N. Kiladis, 2003b: The observed structure of convectively coupled Kelvin waves: Comparison with simple models of coupled wave instability. J. Atmos. Sci., 60 , 16551668.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part II: Westward propagating inertio-gravity waves. J. Meteor. Soc. Japan, 72 , 451465.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y N., , K-M. Lau, , and C-H. Sui, 1996: Observation of a quasi-2-day wave during TOGA COARE. Mon. Wea. Rev., 124 , 18921913.

  • Tung, W-W., , and M. Yanai, 2002: Convective momentum transport observed during the TOGA COARE IOP. Part I: General features. J. Atmos. Sci., 59 , 18571871.

    • Search Google Scholar
    • Export Citation
  • Waliser, D E., , C. Jones, , J-K. Schemm, , and N E. Graham, 1999: A statistical extended-range tropical forecast model based on the slow evolution of the Madden–Julian oscillation. J. Climate, 12 , 19181939.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1988: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45 , 20512065.

  • Wang, B., 2005: Theory. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. K.-M. Lau and D. Waliser, Eds., Springer-Praxis, 307–351.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and J. Chen, 1989: On the zonal-scale selection and vertical structure of equatorial intraseasonal waves. Quart. J. Roy. Meteor. Soc., 115 , 13011323.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and H. Rui, 1990: Dynamics of the moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci., 47 , 397413.

  • Wang, B., , and X. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci., 53 , 449467.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , and M E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12 , 14231457.

    • Search Google Scholar
    • Export Citation
  • Weare, B C., 2003: Composite singular value decomposition analysis of moisture variations associated with the Madden–Julian oscillation. J. Climate, 16 , 37793792.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K M., 1983: Intraseasonal circulation and outgoing longwave radiation modes during Northern Hemisphere winter. Mon. Wea. Rev., 111 , 18381858.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K M., , G R. Lussky, , and J E. Kutzbach, 1985: Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb streamfunction during northern winter. Mon. Wea. Rev., 113 , 941961.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K M., , G N. Kiladis, , and P D. Sardeshmukh, 1997: The dynamics of intraseasonal atmospheric angular momentum oscillations. J. Atmos. Sci., 54 , 14451461.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M C., , and H H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132 , 19171932.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , G N. Kiladis, , and P J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57 , 613640.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S J., , J M. Slingo, , and B J. Hoskins, 2000: The relationship between convection and sea surface temperature on intraseasonal time scales. J. Climate, 13 , 20862104.

    • Search Google Scholar
    • Export Citation
  • Xie, X., , and B. Wang, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part II: Unstable waves. J. Atmos. Sci., 53 , 35893605.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , S. Esbensen, , and J. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , B. Chen, , and W-W. Tung, 2000: The Madden–Julian oscillation observed during the TOGA COARE IOP: Global view. J. Atmos. Sci., 57 , 23742396.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1996: Atmospheric intraseasonal variability at the surface in the tropical western Pacific Ocean. J. Atmos. Sci., 53 , 739758.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: The Madden–Julian oscillation. Rev. Geophys., in press.

  • Zhang, C., , and P J. Webster, 1989: Effects of zonal flows on equatorially trapped waves. J. Atmos. Sci., 46 , 36323652.

  • Zhang, C., , and M J. McPhaden, 2000: Intraseasonal surface cooling in the equatorial western Pacific. J. Climate, 13 , 22612276.

  • Zhang, C., , and S P. Anderson, 2003: Sensitivity of intraseasonal perturbation in SST to the structure of the MJO. J. Atmos. Sci., 60 , 21962207.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., , and M. Dong, 2004: Seasonality in the Madden–Julian oscillation. J. Climate, 17 , 31693180.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 686 686 60
PDF Downloads 560 560 45

Zonal and Vertical Structure of the Madden–Julian Oscillation

View More View Less
  • 1 NOAA/Aeronomy Laboratory, Boulder, Colorado
  • | 2 Department of Geological and Environmental Sciences, Susquehanna University, Selinsgrove, Pennsylvania
  • | 3 Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A statistical study of the three-dimensional structure of the Madden–Julian oscillation (MJO) is carried out by projecting dynamical fields from reanalysis and radiosonde data onto space–time filtered outgoing longwave radiation (OLR) data. MJO convection is generally preceded by low-level convergence and upward motion in the lower troposphere, while subsidence, cooling, and drying prevail aloft. This leads to moistening of the boundary layer and the development of shallow convection, followed by a gradual and then more rapid lofting of moisture into the middle troposphere at the onset of deep convection. After the passage of the heaviest rainfall, a westerly wind burst region is accompanied by stratiform precipitation, where lower tropospheric subsidence and drying coincide with continuing upper tropospheric upward motion. The evolution of the heating field leads to a temperature structure that favors the growth of the MJO. The analysis also reveals distinct differences in the vertical structure of the MJO as it evolves, presumably reflecting changes in its vertical heating profile, phase speed, or the basic-state circulation that the MJO propagates through.

The dynamical structure and the evolution of cloud morphology within the MJO compares favorably in many respects with other propagating convectively coupled equatorial waves. One implication is that the larger convective envelopes within the Tropics tend to be composed of more shallow convection along their leading edges, a combination of deep convection and stratiform rainfall in their centers, and then a preponderance of stratiform rainfall along their trailing edges, regardless of scale or propagation direction. While this may ultimately be the factor that governs the dynamical similarities across the various wave types, it raises questions about how the smaller-scale, higher-frequency disturbances making up the MJO conspire to produce its heating and dynamical structures. This suggests that the observed cloud morphology is dictated by fundamental interactions with the large-scale circulation.

Corresponding author address: George N. Kiladis, NOAA/Aeronomy Laboratory, R/AL3, 325 Broadway, Boulder, CO 80305-3328. Email: gkiladis@al.noaa.gov

Abstract

A statistical study of the three-dimensional structure of the Madden–Julian oscillation (MJO) is carried out by projecting dynamical fields from reanalysis and radiosonde data onto space–time filtered outgoing longwave radiation (OLR) data. MJO convection is generally preceded by low-level convergence and upward motion in the lower troposphere, while subsidence, cooling, and drying prevail aloft. This leads to moistening of the boundary layer and the development of shallow convection, followed by a gradual and then more rapid lofting of moisture into the middle troposphere at the onset of deep convection. After the passage of the heaviest rainfall, a westerly wind burst region is accompanied by stratiform precipitation, where lower tropospheric subsidence and drying coincide with continuing upper tropospheric upward motion. The evolution of the heating field leads to a temperature structure that favors the growth of the MJO. The analysis also reveals distinct differences in the vertical structure of the MJO as it evolves, presumably reflecting changes in its vertical heating profile, phase speed, or the basic-state circulation that the MJO propagates through.

The dynamical structure and the evolution of cloud morphology within the MJO compares favorably in many respects with other propagating convectively coupled equatorial waves. One implication is that the larger convective envelopes within the Tropics tend to be composed of more shallow convection along their leading edges, a combination of deep convection and stratiform rainfall in their centers, and then a preponderance of stratiform rainfall along their trailing edges, regardless of scale or propagation direction. While this may ultimately be the factor that governs the dynamical similarities across the various wave types, it raises questions about how the smaller-scale, higher-frequency disturbances making up the MJO conspire to produce its heating and dynamical structures. This suggests that the observed cloud morphology is dictated by fundamental interactions with the large-scale circulation.

Corresponding author address: George N. Kiladis, NOAA/Aeronomy Laboratory, R/AL3, 325 Broadway, Boulder, CO 80305-3328. Email: gkiladis@al.noaa.gov

Save