• Borys, J. R., , and K. A. Rahn, 1981: Long-range transport of cloud-active aerosol to Iceland. Atmos. Environ., 15 , 14911501.

  • Carrió, G. G., , H. Jiang, , and W. R. Cotton, 2005: Impact of aerosol intrusions on Arctic boundary layer clouds. Part II: Sea ice melting rates. J. Atmos. Sci., 62 , 30943105.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82 , 529.

  • Curry, J. A., and Coauthors, 2000: FIRE Arctic clouds experiment. Bull. Amer. Meteor. Soc., 81 , 529.

  • Feingold, G., , and A. J. Heymsfield, 1992: Parameterizations of condensational growth of droplets for use in general circulation models. J. Atmos. Sci., 49 , 23252342.

    • Search Google Scholar
    • Export Citation
  • Harrington, Y. Y., , T. Reisin, , W. R. Cotton, , and S. M. Kreidenweis, 1999: Cloud resolving simulations of Arctic stratus. Part II: Transition-season clouds. Atmos. Res., 51 , 4575.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., , and W. M. Lipscomb, 1999: CICE: The Los Alamos Sea-Ice Model, Documentation and Software, Version 2.0.

  • Jiang, H., , W. R. Cotton, , J. O. Pinto, , J. A. Curry, , and M. J. Weissbluth, 2000: Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: Sensitivity to concentration of ice crystals and large-scale heat and moisture advection. J. Atmos. Sci., 57 , 21052117.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., , G. Feingold, , W. R. Cotton, , and P. G. Duynkerke, 2001: Large-eddy simulations of entrainment of cloud condensation nuclei into the Arctic boundary layer: May 18, 1998, FIRE/SHEBA case study. J. Geophys. Res., 106D , 1511315122.

    • Search Google Scholar
    • Export Citation
  • Lipscomb, W. H., 2001: Remapping the thickness distribution of sea-ice. J. Geophys. Res., 106 , 1398914000.

  • Meyers, M. P., , R. L. Walko, , J. Y. Harrington, , and W. R. Cotton, 1997: New rams cloud microphysics parameterization: Part II. The two-moment scheme. Atmos. Res., 45 , 339.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , A. Macke, , and Y. Liu, 1996: Modeling cirrus clouds. Part II: Treatment of radiative properties. J. Atmos. Sci., 53 , 29672988.

    • Search Google Scholar
    • Export Citation
  • Olsson, P. Q., , and J. Y. Harrington, 2000: Dynamics and energetics of the cloudy boundary layer in simulations of off-ice flow in the marginal ice zone. J. Geophys. Res., 105 , 1188911899.

    • Search Google Scholar
    • Export Citation
  • Olsson, P. Q., , J. Y. Harrington, , G. Feingold, , W. R. Cotton, , and S. M. Kreidenweis, 1998: Exploratory cloud-resolving simulations of boundary-layer Arctic stratus clouds. Part I: Warm-season clouds. Atmos. Res., 47–48 , 573597.

    • Search Google Scholar
    • Export Citation
  • Patterson, J. R., , B. T. Marshall, , and K. A. Rahn, 1982: Radiative properties of Arctic aerosol. Atmos. Environ., 16 , 29672977.

  • Perovich, D. K., and Coauthors, 1999: SHEBA: Snow and Ice Studies. CD-ROM. [Available from D. Perovich, CRREL, 72 Lyme Rd., Hanover, NH 03755.].

  • Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys., 49 , 6991.

  • Ritter, B., , and J. F. Geleyn, 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120 , 303325.

    • Search Google Scholar
    • Export Citation
  • Rogers, D. C., , P. J. DeMott, , and S. M. Kreidenweis, 2001: Airborne measurements of tropospheric ice-nucleating aerosol particles in the Arctic spring. J. Geophys. Res., 106 , 1505315063.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., , and W. R. Cotton, 2004: A large-droplet model and prognostic number concentration of cloud droplets in the RAMS@CSU model. Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43 , 182195.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., , and M. Schreckner, 1982: On shortwave properties of stratiform water clouds. Quart. J. Roy. Meteor. Soc., 108 , 407426.

  • Yum, S. S., , and J. G. Hudson, 2001: Vertical distributions of cloud condensation nuclei spectra over the springtime Arctic Ocean. J. Geophys. Res., 106 , 1504515052.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and Coauthors, 2005: An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA. J. Atmos. Sci., 62 , 160176.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 2
PDF Downloads 3 3 0

Impact of Aerosol Intrusions on Arctic Boundary Layer Clouds. Part I: 4 May 1998 Case

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

The objective of this paper is to assess the impact of the entrainment of aerosol from above the inversion on the microphysical structure and radiative properties of boundary layer clouds. For that purpose, the Los Alamos National Laboratory sea ice model was implemented into the research and real-time versions of the Regional Atmospheric Modeling System at Colorado State University.

A series of cloud-resolving simulations have been performed for a mixed-phase Arctic boundary layer cloud using a new microphysical module that considers the explicit nucleation of cloud droplets. Different aerosol profiles based on observations were used for initialization. When more polluted initial ice-forming nuclei (IFN) profiles are assumed, the liquid water fraction of the cloud decreases while the total condensate path, the residence time of the ice particles, and the downwelling infrared radiation monotonically increase. Results suggest that increasing the aerosol concentrations above the boundary layer may increase sea ice melting rates when mixed-phase clouds are present.

Corresponding author address: Gustavo Gabriel Carrió, Atmospheric Science Building, Office 225, Colorado State University, Fort Collins, CO 80523. Email: carrio@atmos.colostate.edu

Abstract

The objective of this paper is to assess the impact of the entrainment of aerosol from above the inversion on the microphysical structure and radiative properties of boundary layer clouds. For that purpose, the Los Alamos National Laboratory sea ice model was implemented into the research and real-time versions of the Regional Atmospheric Modeling System at Colorado State University.

A series of cloud-resolving simulations have been performed for a mixed-phase Arctic boundary layer cloud using a new microphysical module that considers the explicit nucleation of cloud droplets. Different aerosol profiles based on observations were used for initialization. When more polluted initial ice-forming nuclei (IFN) profiles are assumed, the liquid water fraction of the cloud decreases while the total condensate path, the residence time of the ice particles, and the downwelling infrared radiation monotonically increase. Results suggest that increasing the aerosol concentrations above the boundary layer may increase sea ice melting rates when mixed-phase clouds are present.

Corresponding author address: Gustavo Gabriel Carrió, Atmospheric Science Building, Office 225, Colorado State University, Fort Collins, CO 80523. Email: carrio@atmos.colostate.edu

Save