• Alexander, M. J., , and J. R. Holton, 1997: A model study of zonal forcing in the equatorial stratosphere by convectively induced gravity waves. J. Atmos. Sci., 54 , 408419.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., , J. H. Beres, , and L. Pfister, 2000: Tropical stratospheric gravity wave activity and relationships to clouds. J. Geophys. Res., 105 , 2229922309.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., , and M. S. Wandishin, 2002: Determining the resolved spatial scales of ETA Model precipitation forecasts. Preprints, 19th Conf. on Weather Analysis and Forecasting and the 15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 85–88.

  • Beres, J. H., , M. J. Alexander, , and J. R. Holton, 2002: Effects of tropospheric wind shear on the spectrum of convectively generated gravity waves. J. Atmos. Sci., 59 , 18051824.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., , M. J. Alexander, , and J. R. Holton, 2004: A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. J. Atmos. Sci., 61 , 324337.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., , J. C. Wyngaard, , and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131 , 23942416.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., 1977: A small-scale dynamic model using a terrain-following coordinate transformation. J. Comput. Phys., 24 , 186215.

  • Clark, T. L., , W. D. Hall, , and J. L. Coen, 1996: Source code documentation for the Clark–Hall cloud-scale model: Code version G3CH01. NCAR Tech. Note NCAR/TN-426+STR, 137 pp.

  • Fovell, R., , D. Durran, , and J. R. Holton, 1992: Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49 , 14271442.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41 .1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., , J. H. Beres, , and X. Zhou, 2002: On the vertical scale of gravity waves excited by localized thermal forcing. J. Atmos. Sci., 59 , 20192023.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. M., , and D. G. Watts, 1968: Spectral Analysis and Its Applications. Holden-Day, 525 pp.

  • Kershaw, R., 1995: Parametrization of momentum transport by convectively generated gravity waves. Quart. J. Roy. Meteor. Soc., 121 , 10231040.

    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr. No. 32, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., , and F. W. Murray, 1976: Ice-bearing cumulus cloud evolution: Numerical simulation and general comparison against observations. J. Appl. Meteor., 15 , 747762.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , and M. J. Reeder, 2001: Modelling the generation of gravity waves by a maritime continent thunderstorm. Quart. J. Roy. Meteor. Soc., 127 , 27052724.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , and T. L. Clark, 2002: Gravity waves generated by the dry convective boundary layer: Two-dimensional scale selection and boundary layer feedback. Quart. J. Roy. Meteor. Soc., 128 , 15431570.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., , R. D. Sharman, , T. L. Clark, , and H-M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60 , 12971321.

    • Search Google Scholar
    • Export Citation
  • Lin, Y. L., , R. D. Farley, , and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Search Google Scholar
    • Export Citation
  • Pfister, L., , S. Scott, , M. Loewenstein, , S. Bowen, , and M. Legg, 1993: Mesoscale disturbances in the tropical stratosphere excited by convection: Observations and effects on the stratospheric momentum budget. J. Atmos. Sci., 50 , 10581075.

    • Search Google Scholar
    • Export Citation
  • Piani, C., , D. Durran, , M. J. Alexander, , and J. R. Holton, 2000: A numerical study of three-dimensional gravity waves triggered by deep tropical convection and their role in the dynamics of the QBO. J. Atmos. Sci., 57 , 36893702.

    • Search Google Scholar
    • Export Citation
  • Randall, D., , M. Khairoutdinov, , A. Arakawa, , and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84 , 15471564.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132 , 30193032.

  • Skamarock, W. C., , J. B. Klemp, , and J. Dudhia, 2001: Prototypes for the WRF (Weather Research and Forecasting) Model. Preprints. Ninth Conf. on Mesoscale Processes, Fort Lauderdale, FL, Amer. Meteor. Soc., J11–J15.

    • Search Google Scholar
    • Export Citation
  • Song, I-S., , H-Y. Chun, , and T. P. Lane, 2003: Generation mechanisms of convectively forced internal gravity waves and their propagation to the stratosphere. J. Atmos. Sci., 60 , 19601980.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and J. B. Klemp, 1982: The dependence of numerically simulated convective systems on vertical wind shear and buoyancy. Mon. Wea. Rev., 110 , 504520.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., , and W. C. Skamarock, 2002: Time splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130 , 20882097.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11 11 6
PDF Downloads 9 9 5

Some Effects of Model Resolution on Simulated Gravity Waves Generated by Deep, Mesoscale Convection

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Over the past decade, numerous numerical modeling studies have shown that deep convective clouds can produce gravity waves that induce a significant vertical flux of horizontal momentum. Such studies used models with horizontal grid spacings of O(1 km) and produced strong gravity waves with horizontal wavelengths greater than about 20 km. This paper is an examination of how simulated gravity waves and their momentum flux are sensitive to model resolution. It is shown that increases in horizontal resolution produce more power in waves with shorter horizontal wavelengths. This change in the gravity waves’ spectra influences their vertical propagation. In some cases, gravity waves that were vertically propagating in coarse simulations become vertically trapped in fine simulations, which strongly influences the vertical flux of horizontal momentum.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Todd Lane, School of Earth Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia. Email: t.lane@earthsci.unimelb.edu.au

Abstract

Over the past decade, numerous numerical modeling studies have shown that deep convective clouds can produce gravity waves that induce a significant vertical flux of horizontal momentum. Such studies used models with horizontal grid spacings of O(1 km) and produced strong gravity waves with horizontal wavelengths greater than about 20 km. This paper is an examination of how simulated gravity waves and their momentum flux are sensitive to model resolution. It is shown that increases in horizontal resolution produce more power in waves with shorter horizontal wavelengths. This change in the gravity waves’ spectra influences their vertical propagation. In some cases, gravity waves that were vertically propagating in coarse simulations become vertically trapped in fine simulations, which strongly influences the vertical flux of horizontal momentum.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Todd Lane, School of Earth Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia. Email: t.lane@earthsci.unimelb.edu.au

Save