• Aebischer, U., , and C. Schär, 1998: Low-level potential vorticity and cyclogenesis to the lee of the Alps. J. Atmos. Sci., 55 , 186207.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., , and M. R. Schoeberl, 1989: Breakdown of vertically propagating two-dimensional gravity waves forced by orography. J. Atmos. Sci., 46 , 21092134.

    • Search Google Scholar
    • Export Citation
  • Barker, E., 1992: Design of the Navy’s multivariate optimum interpolation analysis system. Wea. Forecasting, 7 , 220231.

  • Beau, I., , and P. Bougeault, 1998: Assessment of a gravity-wave drag parameterization with PYREX data. Quart. J. Roy. Meteor. Soc., 124 , 14431464.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C., 1988: Group velocity and the linear response of stratified fluids to internal heat or mass sources. J. Atmos. Sci., 45 , 8193.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1969: Momentum transport by gravity waves. Quart. J. Roy. Meteor. Soc., 95 , 213243.

  • Brinkmann, W. A. R., 1974: Strong downslope windstorms. Mon. Wea. Rev., 102 , 592602.

  • Broad, A., 1996: High-resolution numerical-model integrations to validate gravity-wave drag parameterization schemes: A case study. Quart. J. Roy. Meteor. Soc., 122 , 16251653.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , J. J. Cassano, , T. Klein, , G. Heinemann, , K. M. Hines, , K. Steffen, , and J. E. Box, 2001: Mesoscale modeling of katabatic winds over Greenland with the polar MM5. Mon. Wea. Rev., 129 , 22902309.

    • Search Google Scholar
    • Export Citation
  • Chan, K. R., and Coauthors, 1993: A case study of the mountain lee wave event of January 6, 1992. Geophys. Res. Lett., 20 , 25512554.

  • Clark, T. L., , and W. R. Peltier, 1984: Critical level reflection and the resonant growth of nonlinear mountain waves. J. Atmos. Sci., 41 , 31223134.

    • Search Google Scholar
    • Export Citation
  • Clark, T. L., , W. D. Hall, , R. M. Kerr, , D. Middleton, , L. Radke, , F. M. Ralph, , P. J. Neiman, , and D. Levinson, 2000: Origins of aircraft-damaging clear-air turbulence during the 9 December 1992 Colorado downslope windstorm: Numerical simulations and comparison with observations. J. Atmos. Sci., 57 , 11051131.

    • Search Google Scholar
    • Export Citation
  • Dolgushin, L. D., , and G. B. Osipova, 1989: Glaciers. Publishing House Mysl, 444 pp.

  • Dörnbrack, A., 1998: Turbulent mixing by breaking gravity waves. J. Fluid Mech., 375 , 113141.

  • Dörnbrack, A., , and T. Dürbeck, 1998: Turbulent dispersion of aircraft exhausts in regions of breaking gravity waves. Atmos. Environ., 32 , 31053112.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., , and M. A. Shapiro, 1999: Flow response to large-scale topography: The Greenland tip jet. Tellus, 51A , 728748.

  • Doyle, J. D., , and R. B. Smith, 2003: Mountain waves over the Hohe Tauern. Quart. J. Roy. Meteor. Soc., 129 , 799823.

  • Doyle, J. D., and Coauthors, 2000: An intercomparison of model-predicted wave breaking for the 11 January 1972 Boulder windstorm. Mon. Wea. Rev., 128 , 901914.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1986: Another look at downslope windstorms. Part I: The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci., 43 , 25272543.

    • Search Google Scholar
    • Export Citation
  • Epifanio, C. C., , and D. R. Durran, 2001: Three-dimensional effects in high-drag-state flows over long ridges. J. Atmos. Sci., 58 , 10511065.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41 .1003, doi:10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., , J. F. Garten, , and Ø Andreassen, 1996: Wave breaking and transition to turbulence in stratified shear flows. J. Atmos. Sci., 53 , 10571085.

    • Search Google Scholar
    • Export Citation
  • Grose, W. L., , and B. J. Hoskins, 1979: On the influence of orography on large-scale atmospheric flow. J. Atmos. Sci., 36 , 223234.

  • Harshvardhan, and Davies, R., , D. Randall, , and T. Corsetti, 1987: A fast radiation parameterization for atmospheric circulation models. J. Geophys. Res., 92 , 10091015.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1960: Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys., 38 , 14411481.

  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125 , 14141430.

    • Search Google Scholar
    • Export Citation
  • Hoinka, K. P., , and T. L. Clark, 1991: Pressure drag and momentum fluxes due to the Alps. I: Comparison between numerical simulations and observations. Quart. J. Roy. Meteor. Soc., 117 , 495525.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., , and J. D. Doyle, 2004: Gravity wave breaking over the central Alps: Role of complex terrain. J. Atmos. Sci., 61 , 22492266.

    • Search Google Scholar
    • Export Citation
  • Joly, A., and Coauthors, 1997: The Fronts and Atlantic Storm-Track Experiment (FASTEX): Scientific objectives and experimental design. Bull. Amer. Meteor. Soc., 78 , 19171940.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Klemp, J., , and R. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 10701096.

  • Lester, P. F., , O. Sen, , and R. E. Bach, 1989: The use of DFDR information in the analysis of a turbulence incident over Greenland. Mon. Wea. Rev., 117 , 11031107.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., , and H. Volkert, 2000: The propagation of mountain waves into the stratosphere: Quantitative evaluation of three-dimensional simulations. J. Atmos. Sci., 57 , 30903108.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1978: A severe downslope windstorm and aircraft turbulence event induced by a mountain wave. J. Atmos. Sci., 35 , 5977.

  • Lilly, D. K., , and E. J. Zipser, 1972: The Front Range windstorm of January 11, 1972. Weatherwise, 25 , 5663.

  • Lilly, D. K., , and P. J. Kennedy, 1973: Observations of a stationary mountain wave and its associated momentum flux and energy dissipation. J. Atmos. Sci., 30 , 11351152.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., , and J. B. Klemp, 1979: The effects of terrain shape on nonlinear hydrostatic mountain waves. J. Fluid Mech., 95 , 241261.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1967: Thermally driven diurnal tide in the atmosphere. Quart. J. Roy. Meteor. Soc., 93 , 1842.

  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17 , 187202.

  • Miller, P. P., , and D. R. Durran, 1991: On the sensitivity of downslope windstorms to the asymmetry of the mountain profile. J. Atmos. Sci., 48 , 14571473.

    • Search Google Scholar
    • Export Citation
  • Murphy, B. F., , I. Marsiat, , and P. Valdes, 2002: Atmospheric contributions to the surface mass balance of Greenland in the HadAM3 atmospheric model. J. Geophys. Res., 107 .4556, doi:10.1029/2001JD000389.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., , and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42 , 950960.

    • Search Google Scholar
    • Export Citation
  • Oerlemans, J., , and H. F. Vugts, 1993: A meteorological experiment in the melting zone of the Greenland ice sheet. Bull. Amer. Meteor. Soc., 74 , 355366.

    • Search Google Scholar
    • Export Citation
  • Ólafsson, H., 2000: The impact of flow regimes on asymmetry of orographic drag at moderate and low Rossby numbers. Tellus, 52A , 365379.

    • Search Google Scholar
    • Export Citation
  • Ólafsson, H., , and P. Bougeault, 1996: Nonlinear flow past an elliptical ridge. J. Atmos. Sci., 53 , 24652489.

  • Ólafsson, H., , and P. Bougeault, 1997: The effect of rotation and surface friction on orographic drag. J. Atmos. Sci., 54 , 193210.

  • Palmer, T. N., , G. J. Shutts, , and R. Swinbank, 1986: Alleviation of systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112 , 10011039.

    • Search Google Scholar
    • Export Citation
  • Pan, F., , and R. B. Smith, 1999: Gap winds and wakes: SAR observations and numerical simulations. J. Atmos. Sci., 56 , 905923.

  • Peltier, W. R., , and T. L. Clark, 1979: The evolution and stability of finite-amplitude mountain waves. Part II: Surface wave drag and severe downslope windstorms. J. Atmos. Sci., 36 , 14981529.

    • Search Google Scholar
    • Export Citation
  • Petersen, G. N., , H. Ólafsson, , and J. E. Kristjánsson, 2003: Flow in the lee of idealized mountains and Greenland. J. Atmos. Sci., 60 , 21832195.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., , M. A. Spall, , M. H. Ribergaard, , G. W. K. Moore, , and R. F. Milliff, 2003: Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature, 424 , 152156.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , P. J. Neiman, , and D. Levinson, 1997: Lidar observations of a breaking mountain wave associated with extreme turbulence. Geophys. Res. Lett., 24 , 663666.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 1972: Calculation of airflow over an arbitrary ridge including diabatic heating and cooling. J. Atmos. Sci., 29 , 837843.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., , and P. V. Hobbs, 1983: The mesoscale and microscale structure of organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder–feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40 , 11851206.

    • Search Google Scholar
    • Export Citation
  • Schär, C., , and R. B. Smith, 1993: Shallow-water flow past isolated topography. Part I: Vorticity production and wake formation. J. Atmos. Sci., 50 , 13731400.

    • Search Google Scholar
    • Export Citation
  • Schmid, H., , and A. Dörnbrack, 1999: Simulation of breaking gravity waves during the south foehn of 7–13 January 1996. Beitr. Phys. Atmos., 72 , 287303.

    • Search Google Scholar
    • Export Citation
  • Schwierz, C. B., , and H. C. Davies, 2003: Evolution of a synoptic-scale vortex advecting toward a high mountain. Tellus, 55A , 158172.

  • Shen, B-W., , and Y-L. Lin, 1999: Effects of critical levels on two-dimensional back-sheared flow over an isolated mountain ridge on an f plane. J. Atmos. Sci., 56 , 32863302.

    • Search Google Scholar
    • Export Citation
  • Shutts, G., 1992: Observations and numerical model simulations of a partially trapped lee wave over the Welsh mountains. Mon. Wea. Rev., 120 , 20562066.

    • Search Google Scholar
    • Export Citation
  • Shutts, G., 1998: Stationary gravity-wave structure in flows with directional wind shear. Quart. J. Roy. Meteor. Soc., 124 , 14211442.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1985: On severe downslope winds. J. Atmos. Sci., 43 , 25972603.

  • Smith, R. B., 1989: Hydrostatic flow over mountains. Advances in Geophysics, Vol. 31, Academic Press, 1–41.

  • Smith, R. B., , and Y-L. Lin, 1982: The addition of heat to a specified airstream with application to the dynamics of orographic rain. Quart. J. Roy. Meteor. Soc., 108 , 353378.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., , S. T. Skubis, , J. D. Doyle, , A. Broad, , C. Kiemle, , and H. Volkert, 2002: Mountain waves over Mt. Blanc: Influence of a stagnant boundary layer. J. Atmos. Sci., 59 , 20732092.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., , and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated vortices. J. Atmos. Sci., 46 , 11541164.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., , L. G. Margolin, , and A. A. Wyszogrodzi, 2001: A class of nonhydrostatic global models. J. Atmos. Sci., 58 , 349364.

    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., , H. Volkert, , and D. Heimann, 1993: Potential vorticity of flow along the Alps. J. Atmos. Sci., 50 , 15731590.

  • VanZandt, T. E., , and D. C. Fritts, 1989: A theory of enhanced saturation of the gravity wave spectrum due to increases in atmospheric stability. Pure Appl. Geophys., 130 , 399420.

    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., , and S. D. Mobbs, 1996: Lee waves over the English Lake District. Quart. J. Roy. Meteor. Soc, 122 , 12831305.

  • Wei, M-Y., , and T. K. Schaack, 1984: Seasonal distributions of mountain torques during FGGE. J. Atmos. Sci., 41 , 30323039.

  • Whiteman, C. D., , and J. G. Whiteman, 1974: An historical climatology of damaging downslope windstorms at Boulder, Colorado. NOAA Tech. Rep. ERL 336-APCL 35, 62 pp. [Available from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20401.].

  • Worthington, R. M., 1998: Tropopausal turbulence caused by the breaking of mountain waves. J. Atmos. Solar-Terr. Phys., 60 , 15431547.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 40 40 20
PDF Downloads 26 26 17

Large-Amplitude Mountain Wave Breaking over Greenland

View More View Less
  • 1 Naval Research Laboratory, Monterey, California
  • 2 NOAA/Office of Weather and Air Quality, Boulder, Colorado
  • 3 University Corporation for Atmospheric Research, Monterey, California
  • 4 National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

A large-amplitude mountain wave generated by strong southwesterly flow over southern Greenland was observed during the Fronts and Atlantic Storm-Track Experiment (FASTEX) on 29 January 1997 by the NOAA G-IV research aircraft. Dropwindsondes deployed every 50 km and flight level data depict a vertically propagating large-amplitude wave with deep convectively unstable layers, potential temperature perturbations of 25 K that deformed the tropopause and lower stratosphere, and a vertical velocity maximum of nearly 10 m s−1 in the stratosphere. The wave breaking was associated with a large vertical flux of horizontal momentum and dominated by quasi-isotropic turbulence. The Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) nonhydrostatic model with four-nested grid meshes with a minimum resolution of 1.7 km accurately simulates the amplitude, location, and timing of the mountain wave and turbulent breakdown. Finescale low-velocity plumes that resemble wakelike structures emanate from highly dissipative turbulent regions of wave breaking in the lower stratosphere. Idealized adiabatic three-dimensional simulations suggest that steep terrain slopes increase the effective Rossby number of the relatively wide Greenland plateau, decrease the sensitivity of the wave characteristics to rotation, and ultimately increase the tendency for wave breaking. Linear theory and idealized simulations indicate that diabatic cooling within the boundary layer above the Greenland ice sheet augments the effective mountain height and increases the wave amplitude and potential for wave breaking for relatively wide obstacles such as Greenland.

Corresponding author address: James D. Doyle, Marine Meteorology Division, Naval Research Laboratory, 7 Grace Hopper Avenue, Monterey, CA 93943-5502. Email: doyle@nrlmry.navy.mil

Abstract

A large-amplitude mountain wave generated by strong southwesterly flow over southern Greenland was observed during the Fronts and Atlantic Storm-Track Experiment (FASTEX) on 29 January 1997 by the NOAA G-IV research aircraft. Dropwindsondes deployed every 50 km and flight level data depict a vertically propagating large-amplitude wave with deep convectively unstable layers, potential temperature perturbations of 25 K that deformed the tropopause and lower stratosphere, and a vertical velocity maximum of nearly 10 m s−1 in the stratosphere. The wave breaking was associated with a large vertical flux of horizontal momentum and dominated by quasi-isotropic turbulence. The Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) nonhydrostatic model with four-nested grid meshes with a minimum resolution of 1.7 km accurately simulates the amplitude, location, and timing of the mountain wave and turbulent breakdown. Finescale low-velocity plumes that resemble wakelike structures emanate from highly dissipative turbulent regions of wave breaking in the lower stratosphere. Idealized adiabatic three-dimensional simulations suggest that steep terrain slopes increase the effective Rossby number of the relatively wide Greenland plateau, decrease the sensitivity of the wave characteristics to rotation, and ultimately increase the tendency for wave breaking. Linear theory and idealized simulations indicate that diabatic cooling within the boundary layer above the Greenland ice sheet augments the effective mountain height and increases the wave amplitude and potential for wave breaking for relatively wide obstacles such as Greenland.

Corresponding author address: James D. Doyle, Marine Meteorology Division, Naval Research Laboratory, 7 Grace Hopper Avenue, Monterey, CA 93943-5502. Email: doyle@nrlmry.navy.mil

Save