• Ackerman, A. S., , O. B. Toon, , J. P. Taylor, , D. W. Johnson, , P. V. Hobbs, , and R. J. Ferek, 2000: Effects of aerosols on cloud albedo: Evaluation of Twomey’s parameterization of cloud susceptibility using measurements of ship tracks. J. Atmos. Sci., 57 , 26842695.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245 , 12271230.

  • Austin, P., , S. Siems, , and Y. Wang, 1995a: Constraints on droplet growth in radiatively cooled stratocumulus clouds. J. Geophys. Res., 100 , 1423114242.

    • Search Google Scholar
    • Export Citation
  • Austin, P., , Y. Wang, , R. Pincus, , and V. Kujala, 1995b: Precipitation in stratocumulus clouds: Observations and modeling results. J. Atmos. Sci., 52 , 23292352.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., 1993: Variability in concentrations of cloud condensation nuclei in the marine cloud-topped boundary layer. Tellus, 45B , 458472.

    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., , B. Baker, , and K. Weaver, 1993: A technique for measurement of cloud structure on centimeter scales. J. Atmos. Oceanic Technol., 10 , 557565.

    • Search Google Scholar
    • Export Citation
  • Boers, R., , J. B. Jensen, , P. B. Krummel, , and H. Gerber, 1996: Microphysical and short-wave radiative structure of wintertime stratocumulus clouds over the Southern Ocean. Quart. J. Roy. Meteor. Soc., 122 , 13071339.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J. L., 2003: Introduction to special section: An experimental study of the aerosol indirect effect for validation of climate model parameterizations. J. Geophys. Res., 108 .8627, doi:10.1029/2003JD003849.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J. L., and Coauthors, 2000: An overview of the ACE-2 CLOUDYCOLUMN closure experiment. Tellus, 52B , 815827.

  • Breon, F-M., , D. Tanre, , and S. Generoso, 2002: Aerosol effect on cloud droplet size monitored from space. Science, 295 , 834837.

  • Bretherton, C. S., , and R. Pincus, 1995: Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiments. Part I: Synoptic setting and vertical structure. J. Atmos. Sci., 52 , 27072723.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , and M. C. Wyant, 1997: Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54 , 148167.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85 , 967977.

  • Cahalan, R. F., , and J. B. Snider, 1989: Marine stratocumulus structure. Remote Sens. Environ., 28 , 95107.

  • Cahalan, R. F., , W. Ridgway, , W. J. Wiscombe, , T. L. Bell, , and J. B. Snider, 1994: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51 , 24342455.

    • Search Google Scholar
    • Export Citation
  • Celik, F., , and J. D. Marwitz, 1999: Droplet spectra broadening by the ripening process. Part I: Roles of curvature and salinity of cloud droplets. J. Atmos. Sci., 56 , 30913105.

    • Search Google Scholar
    • Export Citation
  • Comstock, K., , S. Yuter, , and R. Wood, 2004: Reflectivity and rain rate in and below drizzling stratocumulus. Quart. J. Roy. Meteor. Soc., 130 , 28912919.

    • Search Google Scholar
    • Export Citation
  • Comstock, K., , C. S. Bretherton, , and S. E. Yuter, 2005: Mesoscale variability and drizzle in southeast Pacific stratocumulus. J. Atmos. Sci., in press.

    • Search Google Scholar
    • Export Citation
  • Davis, A., , A. Marshak, , W. Wiscombe, , and R. Cahahlan, 1994: Multifractal characterizations of nonstationarity and intermittency in geophysical fields. J. Geophys. Res., 99 , 80558072.

    • Search Google Scholar
    • Export Citation
  • Davis, A., , A. Marshak, , W. Wiscombe, , and R. Cahalan, 1996: Scale invariance of liquid water distributions in marine stratocumulus. Part I: Spectral properties and stationarity issues. J. Atmos. Sci., 53 , 15381558.

    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., , and P. G. Duynkerke, 1997: Observed Lagrangian transition of stratocumulus into cumulus during ASTEX: Mean state and turbulence structure. J. Atmos. Sci., 54 , 21572173.

    • Search Google Scholar
    • Export Citation
  • Durkee, P. A., and Coauthors, 2000: The impact of ship-produced aerosols on the microstructure and albedo of warm marine stratocumulus clouds: A test of MAST hypotheses 1i and 1ii. J. Atmos. Sci., 57 , 25542569.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., , and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122 , 689720.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , B. Stevens, , W. R. Cotton, , and A. S. Frisch, 1996: The relationship between drop in-cloud residence time and drizzle production in numerically simulated stratocumulus clouds. J. Atmos. Sci., 53 , 11081112.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., , R. Boers, , B. Stevens, , and W. R. Cotton, 1997: A modeling study of the effect of drizzle on cloud optical depth and susceptibility. J. Geophys. Res., 102 , 1352713534.

    • Search Google Scholar
    • Export Citation
  • Gerber, H., 1996: Microphysics of marine stratocumulus with two drizzle modes. J. Atmos. Sci., 53 , 16491662.

  • Gultepe, I., , G. A. Isaac, , W. R. Leaitch, , and C. M. Banic, 1996: Parameterizations of marine stratus microphysics based on in situ observations: Implications for GCMs. J. Climate, 9 , 345357.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., , G. Feingold, , and W. R. Cotton, 2000: Radiative impacts on the growth of a population of drops within simulated summertime Arctic stratus. J. Atmos. Sci., 57 , 766785.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., , and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys., 38 , 513543.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., , and S. S. Yum, 2001: Maritime–continental drizzle contrasts in small cumuli. J. Atmos. Sci., 58 , 915926.

  • Jensen, J. B., , S. Lee, , P. B. Krummel, , J. Katzfey, , and D. Gogoasa, 2000: Precipitation in marine cumulus and stratocumulus. Part I: Thermodynamic and dynamic observations of closed cell circulations and cumulus bands. Atmos. Res., 54 , 117155.

    • Search Google Scholar
    • Export Citation
  • Jonas, P. R., 1996: Turbulence and cloud microphysics. Atmos. Res., 40 , 283306.

  • Khairoutdinov, M., , and Y. Kogan, 1999: A large-eddy simulation model with explicit microphysics: Validation against aircraft observations of a stratocumulus-topped boundary layer. J. Atmos. Sci., 56 , 21152131.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , and G. A. Isaac, 2000: Drop growth due to high supersaturation caused by isobaric mixing. J. Atmos. Sci., 57 , 16751685.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., , J. W. Strapp, , and G. A. Isaac, 1998: Evaluation of the accuracy of PMS optical array probes. J. Atmos. Oceanic Technol., 15 , 708720.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., , R. Wood, , P. R. Field, , J-C. Golaz, , T. H. Vonder Haar, , and W. R. Cotton, 2001: Systematic biases in the microphysics and thermodynamics of numerical models that ignore subgrid-scale variability. J. Atmos. Sci., 58 , 11171128.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., , and B. B. Stankov, 1986: Length scales in the convective boundary layer. J. Atmos. Sci., 43 , 11901209.

  • Lewis, G. M., , P. H. Austin, , and M. Szczodrak, 2004: Spatial statistics of marine boundary layer clouds. J. Geophys. Res., 109 .D04104, doi:10.1029/2003JD003742.

    • Search Google Scholar
    • Export Citation
  • Lewis, W., 1951: Meteorological aspects of aircraft icing. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 1197–1203.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., , and S. C. Ou, 1989: The role of cloud microphysical processes in climate: An assessment from a one-dimensional perspective. J. Geophys. Res., 94 , 85998607.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., , and J. Hallett, 1998: On size distributions of cloud droplets growing by condensation: A new conceptual model. J. Atmos. Sci., 55 , 527536.

    • Search Google Scholar
    • Export Citation
  • Marshak, A., , A. Davis, , R. Cahalan, , and W. J. Wiscombe, 1994: Bounded cascade models as non-stationary multifractals. Phys. Rev., E49 , 5579.

    • Search Google Scholar
    • Export Citation
  • Marshak, A., , A. Davis, , W. Wiscombe, , and R. Cahalan, 1997: Scale invariance in liquid water distributions in marine stratocumulus. Part II: Multifractal properties and intermittency issues. J. Atmos. Sci., 54 , 14231444.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., , D. W. Johnson, , and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51 , 18231842.

    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 1952: Production of rain and drizzle in stratiform clouds. Quart. J. Roy. Meteor. Soc., 78 , 377386.

  • Monin, A. S., , and A. M. Yaglom, 1975: Statistical Fluid Mechanics: Mathematics of Turbulence. Vol. 2. The MIT Press, 874 pp.

  • Nakajima, T., , A. Higurashi, , K. Kawamoto, , and J. E. Penner, 2001: A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys. Res. Lett., 28 , 11711174.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1984: The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quart. J. Roy. Meteor. Soc., 110 , 783820.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1987: A model of drizzle growth in warm, turbulent, stratiform clouds. Quart. J. Roy. Meteor. Soc., 113 , 11411170.

  • Nicholls, S., , and J. Leighton, 1986: An observational study of the structure of stratiform cloud sheets: Part I. Structure. Quart. J. Roy. Meteor. Soc., 112 , 431460.

    • Search Google Scholar
    • Export Citation
  • Noonkester, V. R., 1984: Droplet spectra observed in marine stratus cloud layers. J. Atmos. Sci., 41 , 829845.

  • Oreopoulos, L., , and R. Davies, 1998: Plane parallel albedo biases from satellite observations. Part I: Dependence on resolution and other factors. J. Climate, 11 , 919932.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., , and D. H. Lenschow, 1991: Stratiform cloud formation in the marine boundary layer. J. Atmos. Sci., 48 , 21412158.

  • Pawlowska, H., , and J-L. Brenguier, 2000: Microphysical properties of stratocumulus clouds during ACE-2. Tellus, 52B , 867886.

  • Pawlowska, H., , and J-L. Brenguier, 2003: An observational study of drizzle formation in stratocumulus clouds for general circulation model (GCM) parameterizations. J. Geophys. Res., 108 .8630, doi:10.1029/2002JD002679.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1995: Frequencies and characteristics of global oceanic precipitation from shipboard present-weather reports. Bull. Amer. Meteor. Soc., 76 , 15931616.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., , and S. A. Klein, 2000: Unresolved spatial variability and microphysical process rates in large scale models. J. Geophys. Res., 105 , 2705927066.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., , and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 976 pp.

  • Rand, H. A., 1995: Mesoscale dynamics of the marine atmospheric boundary layer. Ph.D. thesis, University of Washington, 136 pp.

  • Rogers, D. P., , D. W. Johnson, , and C. A. Friehe, 1995: The stable internal boundary layer over a coastal sea. Part I: Airborne measurements of the mean and turbulence structure. J. Atmos. Sci., 52 , 684696.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., 2000: On the “tuning” of autoconversion parameterizations in climate models. J. Geophys. Res., 105 , 1549515507.

  • Schuller, L., , J-L. Brenguier, , and H. Pawlowska, 2003: Retrieval of microphysical, geometrical, and radiative properties of marine stratocumulus from remote sensing. J. Geophys. Res., 108 .8631, doi:10.1029/2002JD002680.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1997: Gravity Currents in the Environment and the Laboratory. 2d ed. Cambridge University Press, 244 pp.

  • Snider, J. R., , S. Guibert, , J-L. Brenguier, , and J-P. Putaud, 2003: Aerosol activation in marine stratocumulus clouds: 2. Köhler and parcel theory closure studies. J. Geophys. Res., 108 .8629, doi:10.1029/2002JD002692.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83 , 17711790.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., , W. R. Cotton, , G. Feingold, , and C-H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55 , 36163638.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: Dynamics and Chemistry of Marine Stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84 , 579593.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Szczodrak, M., , P. H. Austin, , and P. B. Krummel, 2001: Variability of optical depth and effective radius in marine stratocumulus clouds. J. Atmos. Sci., 58 , 29122926.

    • Search Google Scholar
    • Export Citation
  • Taylor, J. P., , M. D. Glew, , J. A. Coakley Jr., , W. R. Tahnk, , S. Platnick, , P. V. Hobbs, , and R. J. Ferek, 2000: Effects of aerosols on the radiative properties of clouds. J. Atmos. Sci., 57 , 26562670.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1959: The nuclei of natural cloud formation. II. The supersaturation in clouds and the variation in cloud droplet concentration. Geofis. Pura Appl., 43 , 243249.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., , and J. Warner, 1967: Comparison of measurements of cloud droplets and cloud nuclei. J. Atmos. Sci., 24 , 702703.

  • Vali, G., , R. D. Kelly, , J. French, , S. Haimov, , D. Leon, , A. McIntosh, , and R. E. Pazmany, 1998: Finescale structure and microphysics of coastal stratus. J. Atmos. Sci., 55 , 35403564.

    • Search Google Scholar
    • Export Citation
  • vanZanten, M., , B. Stevens, , G. Vali, , and D. Lenschow, 2002: The total water budget of nocturnal stratocumulus. Preprints, 15th Symp. on Boundary Layers and Turbulence, Wageningen, Netherlands, Amer. Meteor. Soc., CD-ROM, 4.7.

  • vanZanten, M. C., , B. Stevens, , G. Vali, , and D. H. Lenschow, 2005: Observations of drizzle in nocturnal marine stratocumulus. J. Atmos. Sci., 62 , 88106.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2000: Parametrization of the effect of drizzle upon the droplet effective radius in stratocumulus clouds. Quart. J. Roy. Meteor. Soc., 126 , 33093324.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part II: Microphysical aspects. J. Atmos. Sci., 62 , 30343050.

  • Wood, R., , and P. R. Field, 2000: Relationships between total water, condensed water, and cloud fraction in stratiform clouds examined using aircraft data. J. Atmos. Sci., 57 , 18881905.

    • Search Google Scholar
    • Export Citation
  • Wood, R., , and J. P. Taylor, 2001: Liquid water path variability in unbroken marine stratocumulus. Quart. J. Roy. Meteor. Soc., 127 , 26352662.

    • Search Google Scholar
    • Export Citation
  • Wood, R., , P. R. Field, , and W. R. Cotton, 2002: Autoconversion rate bias in boundary layer cloud parameterizations. Atmos. Res., 65 , 109128.

    • Search Google Scholar
    • Export Citation
  • Wood, R., , K. Comstock, , P. Caldwell, , C. S. Bretherton, , and S. E. Yuter, 2004: Drizzle and cloud structure in SE Pacific stratocumulus. Proc. 14th ICCP Int. Conf. on Clouds and Precipitation, Bologna, Italy, International Commission on Clouds and Precipitation, CD-ROM, 180.

  • Wyngaard, J. C., , and R. A. Brost, 1984: Top-down and bottom-up diffusion of a scalar in the convective boundary layer. J. Atmos. Sci., 41 , 102112.

    • Search Google Scholar
    • Export Citation
  • Yum, S. S., , and J. G. Hudson, 2002: Maritime/continental microphysical contrasts in stratus. Tellus, 54B , 6173.

  • Yum, S. S., , J. G. Hudson, , and Y. Xie, 1998: Cloud condensation nuclei and drizzle. Preprints, Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 267–270.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 77 77 33
PDF Downloads 46 46 23

Drizzle in Stratiform Boundary Layer Clouds. Part I: Vertical and Horizontal Structure

View More View Less
  • 1 Met Office, Exeter, Devon, United Kingdom
© Get Permissions
Restricted access

Abstract

Detailed observations of stratiform boundary layer clouds on 12 days are examined with specific reference to drizzle formation processes. The clouds differ considerably in mean thickness, liquid water path (LWP), and droplet concentration. Cloud-base precipitation rates differ by a factor of 20 between cases. The lowest precipitation rate is found in the case with the highest droplet concentration even though this case had by far the highest LWP, suggesting that drizzle can be severely suppressed in polluted clouds.

The vertical and horizontal structure of cloud and drizzle liquid water and bulk microphysical parameters are examined in detail. In general, the highest concentration of r > 20 μm drizzle drops is found toward the top of the cloud, and the mean volume radius of the drizzle drops increases monotonically from cloud top to base. The resulting precipitation rates are largest at the cloud base but decrease markedly only in the upper third of the cloud. Below cloud, precipitation rates decrease markedly with distance below base due to evaporation, and are broadly consistent in most cases with the results from a simple sedimentation–evaporation model. Evidence is presented that suggests evaporating drizzle is cooling regions of the subcloud layer, which could result in dynamical feedbacks. A composite power spectrum of the horizontal spatial series of precipitation rate is found to exhibit a power-law scaling from the smallest observable scales to close to the maximum observable scale (∼30 km). The exponent is considerably lower (1.1–1.2) than corresponding exponents for LWP variability obtained in other studies (∼1.5–2), demonstrating that there is relatively more variability of drizzle on small scales. Singular measures analysis shows that drizzle fields are much more intermittent than the cloud liquid water content fields, consistent with a drizzle production process that depends strongly upon liquid water content. The adiabaticity of the clouds, which can be modeled as a simple balance between drizzle loss and turbulent replenishment, is found to decrease if the time scale for drizzle loss is shorter than roughly 5–10 eddy turnover time scales. Finally, the data are compared with three simple scalings derived from recent observations of drizzle in subtropical stratocumulus clouds.

Corresponding author address: Dr. Robert Wood, Dept. of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98102. Email: robwood@atmos.washington.edu

Abstract

Detailed observations of stratiform boundary layer clouds on 12 days are examined with specific reference to drizzle formation processes. The clouds differ considerably in mean thickness, liquid water path (LWP), and droplet concentration. Cloud-base precipitation rates differ by a factor of 20 between cases. The lowest precipitation rate is found in the case with the highest droplet concentration even though this case had by far the highest LWP, suggesting that drizzle can be severely suppressed in polluted clouds.

The vertical and horizontal structure of cloud and drizzle liquid water and bulk microphysical parameters are examined in detail. In general, the highest concentration of r > 20 μm drizzle drops is found toward the top of the cloud, and the mean volume radius of the drizzle drops increases monotonically from cloud top to base. The resulting precipitation rates are largest at the cloud base but decrease markedly only in the upper third of the cloud. Below cloud, precipitation rates decrease markedly with distance below base due to evaporation, and are broadly consistent in most cases with the results from a simple sedimentation–evaporation model. Evidence is presented that suggests evaporating drizzle is cooling regions of the subcloud layer, which could result in dynamical feedbacks. A composite power spectrum of the horizontal spatial series of precipitation rate is found to exhibit a power-law scaling from the smallest observable scales to close to the maximum observable scale (∼30 km). The exponent is considerably lower (1.1–1.2) than corresponding exponents for LWP variability obtained in other studies (∼1.5–2), demonstrating that there is relatively more variability of drizzle on small scales. Singular measures analysis shows that drizzle fields are much more intermittent than the cloud liquid water content fields, consistent with a drizzle production process that depends strongly upon liquid water content. The adiabaticity of the clouds, which can be modeled as a simple balance between drizzle loss and turbulent replenishment, is found to decrease if the time scale for drizzle loss is shorter than roughly 5–10 eddy turnover time scales. Finally, the data are compared with three simple scalings derived from recent observations of drizzle in subtropical stratocumulus clouds.

Corresponding author address: Dr. Robert Wood, Dept. of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98102. Email: robwood@atmos.washington.edu

Save